Transition metal

In chemistry, the term transition metal (sometimes also called a transition element) has two possible meanings:

The first definition is simple and has traditionally been used. However, many interesting properties of the transition elements as a group are the result of their partly filled d subshells. Periodic trends in the d block (transition metals) are less prevailing than in the rest of the periodic table. Going across a period, the valence doesn't change, so the electron being added to an atom goes to the inner shell, not outer shell, strengthening the shield. [3]

The (loosely defined) transition metals are the 40 chemical elements 21 to 30, 39 to 48, 71 to 80, and 103 to 112. The name transition comes from their position in the periodic table of elements. In each of the four periods in which they occur, these elements represent the successive addition of electrons to the d atomic orbitals of the atoms. In this way, the transition metals represent the transition between group 2 elements and group 13 elements.

Group 3 (III B) 4 (IV B) 5 (V B) 6 (VI B) 7 (VII B) 8 (VIII B) 9 (VIII B) 10 (VIII B) 11 (I B) 12 (II B)
Period 4 Sc 21 Ti 22 V 23 Cr 24 Mn 25 Fe 26 Co 27 Ni 28 Cu 29 Zn 30
Period 5 Y 39 Zr 40 Nb 41 Mo 42 Tc 43 Ru 44 Rh 45 Pd 46 Ag 47 Cd 48
Period 6 La 57 Hf 72 Ta 73 W 74 Re 75 Os 76 Ir 77 Pt 78 Au 79 Hg 80
Period 7 Ac 89 Rf 104 Db 105 Sg 106 Bh 107 Hs 108 Mt 109 Ds 110 Rg 111 Uub 112

Contents

Variable oxidation states

As opposed to group 1 and group 2 metals, ions of the transition elements may have multiple oxidation states, since they can lose d electrons without a high energetic penalty. Manganese, for example has two 4s electrons and five 3d electrons, which can be removed. Loss of all of these electrons leads to a +7 oxidation state. Osmium and ruthenium compounds are commonly found alone in stable +8 oxidation states, which is among the highest for isolatable compounds.

This table shows some of the oxidation states found in compounds of the transition-metal elements.
A solid circle represents a common oxidation state, and a ring represents a less common (less energetically favourable) oxidation state.

Patterns in oxidation state emerge across the period of transition elements:

Colored compounds

From left to right, aqueous solutions of: Co(NO3)2 (red); K2Cr2O7 (orange); K2CrO4 (yellow); NiCl2 (green); CuSO4 (blue); KMnO4 (purple).

We observe varying frequencies of electromagnetic radiation in the visible region of the electromagnetic spectrum as color. Different colors result from the changed enerty distribution of photons (light particles) after it has been reflected, transmitted or absorbed after hitting a substance. Because of their structure, transition metals form many different colored ions and complexes. Color even varies between the different ions of a single element - MnO4 (Mn in oxidation state 7+) is a purple compound, whereas Mn2+ is pale-pink.

Coordination by ligands can play a part in determining color in a transition compound, due to changes in energy of the d orbitals. Ligands remove degeneracy of the orbitals and split them in to higher and lower energy groups. The energy gap between the lower and higher energy orbitals will determine the color of light that is absorbed, as electromagnetic radiation is only absorbed if it has energy corresponding to that gap. When a ligated ion absorbs light, some of the electrons are promoted to a higher energy orbital. Since different frequency light is absorbed, different colors are observed.

The color of a complex depends on:

The complex ion formed by the d block element zinc (though not strictly a transition element) is colorless, because the 3d orbitals are full - no electrons are able to move up to the higher group.

See also

References

  1. International Union of Pure and Applied Chemistry. "transition element". Compendium of Chemical Terminology Internet edition.
  2. Cotton, F. Albert; Wilkinson, G.; Murillo, C. A. (1999). Advanced Inorganic Chemistry (6th ed.). New York: Wiley.
  3. JCE 2005 (82) 1660 [Nov] Trends in Ionization Energy of Transition-Metal Elements