|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
General | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Name, Symbol, Number | selenium, Se, 34 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Element category | nonmetals | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Group, Period, Block | 16, 4, p | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Appearance | gray-black, metallic luster |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Standard atomic weight | 78.96(3) g·mol−1 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Electron configuration | [Ar] 4s2 3d10 4p4 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Electrons per shell | 2, 8, 18, 6 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Physical properties | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Phase | solid | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Density (near r.t.) | (gray) 4.81 g·cm−3 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Density (near r.t.) | (alpha) 4.39 g·cm−3 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Density (near r.t.) | (vitreous) 4.28 g·cm−3 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Liquid density at m.p. | 3.99 g·cm−3 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Melting point | 494 K (221 °C, 430 °F) |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Boiling point | 958 K (685 °C, 1265 °F) |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Critical point | 1766 K, 27.2 MPa | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Heat of fusion | (gray) 6.69 kJ·mol−1 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Heat of vaporization | 95.48 kJ·mol−1 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Specific heat capacity | (25 °C) 25.363 J·mol−1·K−1 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Atomic properties | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Crystal structure | hexagonal | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Oxidation states | 6, 4, 2, 1,[1] -2 (strongly acidic oxide) |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Electronegativity | 2.55 (Pauling scale) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Ionization energies (more) |
1st: 941.0 kJ·mol−1 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
2nd: 2045 kJ·mol−1 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
3rd: 2973.7 kJ·mol−1 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Atomic radius | 115 pm | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Atomic radius (calc.) | 103 pm | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Covalent radius | 116 pm | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Van der Waals radius | 190 pm | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Miscellaneous | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Magnetic ordering | no data | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Thermal conductivity | (300 K) (amorphous) 0.519 W·m−1·K−1 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Thermal expansion | (25 °C) (amorphous) 37 µm·m−1·K−1 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Speed of sound (thin rod) | (20 °C) 3350 m/s | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Young's modulus | 10 GPa | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Shear modulus | 3.7 GPa | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Bulk modulus | 8.3 GPa | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Poisson ratio | 0.33 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mohs hardness | 2.0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Brinell hardness | 736 MPa | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
CAS registry number | 7782-49-2 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Most-stable isotopes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
References |
Selenium (pronounced /səˈliniəm/) is a chemical element with the atomic number 34, represented by the chemical symbol Se, an atomic mass of 78.96. It is a nonmetal, chemically related to sulfur and tellurium, and rarely occurs in its elemental state in nature. It is toxic in large amounts, but trace amounts of it are necessary for cellular function in most, if not all, animals, forming the active center of the enzymes glutathione peroxidase and thioredoxin reductase (which indirectly reduce certain oxidized molecules in animals and some plants) and three known deiodinase enzymes (which convert one thyroid hormone to another). Selenium requirements in plants differ by species, with some plants apparently requiring none.[2]
Isolated selenium occurs in several different forms, the most stable of which is a dense purplish-gray semi-metal (semiconductor) form that is structurally a trigonal polymer chain. It conducts electricity better in the light than in the dark, and is used in photocells (see allotropic section below). Selenium also exists in many non-conductive forms: a black glass-like allotrope, as well as several red crystalline forms built of eight-membered ring molecules, like its lighter chemical cousin sulfur.
Selenium is found in economic quantities in sulfide ores such as pyrite, partially replacing the sulfur in the ore matrix. Minerals that are selenide or selenate compounds are also known, but all are rare.
Contents |
Selenium occurs naturally in a number of inorganic forms, including selenide, selenate and selenite. In soils, selenium most often occurs in soluble forms like selenate (analogous to sulfate), which are leached into rivers very easily by runoff.
Selenium has a biological role, and is found in organic compounds such as dimethyl selenide, selenomethionine, selenocysteine and methylselenocysteine. In these compounds selenium plays an analogous role to sulfur.
Selenium is most commonly produced from selenide in many sulfide ores, such as those of copper, silver, or lead. It is obtained as a byproduct of the processing of these ores, from the anode mud of copper refineries and the mud from the lead chambers of sulfuric acid plants. These muds can be processed by a number of means to obtain free selenium.
Natural sources of selenium include certain selenium-rich soils, and selenium that has been bioconcentrated by certain toxic plants such as locoweed. Anthropogenic sources of selenium include coal burning and the mining and smelting of sulfide ores.[3]
See also Selenide minerals.
Selenium has six naturally occurring isotopes, five of which are stable: 74Se, 76Se, 77Se, 78Se, and 80Se. The last three also occur as fission products, along with 79Se which has a halflife of 295,000 years, and 82Se which has a very long half life (~1020 yr, decaying via double beta decay to 82Kr) and for practical purposes can be considered to be stable. 23 other unstable isotopes have been characterized.
See also Selenium-79 for more information on recent changes in the halflife of this fission product important for the dose calculations performed in the frame of the geological disposal of long-lived radioactive waste.
Selenium (Greek σελήνη selene meaning "Moon") was discovered in 1817 by Jöns Jakob Berzelius who found the element associated with tellurium (named for the Earth).
Growth in selenium consumption was historically driven by steady development of new uses, including applications in rubber compounding, steel alloying, and selenium rectifiers. Selenium is also an essential material in the drums of laser printers and copiers. By 1970, selenium in rectifiers had largely been replaced by silicon, but its use as a photoconductor in plain paper copiers had become its leading application. During the 1980s, the photoconductor application declined (although it was still a large end-use) as more and more copiers using organic photoconductors were produced. Presently, the largest use of selenium worldwide is in glass manufacturing, followed by uses in chemicals and pigments. Electronic use, despite a number of continued applications, continues to decline.[4]
In 1996, continuing research showed a positive correlation between selenium supplementation and cancer prevention in humans, but widespread direct application of this important finding would not add significantly to demand owing to the small doses required. In the late 1990s, the use of selenium (usually with bismuth) as an additive to plumbing brasses to meet no-lead environmental standards, became important. At present, total world selenium production continues to increase modestly.
Although it is toxic in large doses, selenium is an essential micronutrient for animals. In plants, it occurs as a bystander mineral, sometimes in toxic proportions in forage (some plants may accumulate selenium as a defense against being eaten by animals, but other plants such as locoweed require selenium, and their growth indicates the presence of selenium in soil).[2] It is a component of the unusual amino acids selenocysteine and selenomethionine. In humans, selenium is a trace element nutrient which functions as cofactor for reduction of antioxidant enzymes such as glutathione peroxidases and certain forms of thioredoxin reductase found in animals and some plants (this enzyme occurs in all living organisms, but not all forms of it in plants require selenium).
Glutathione peroxidase (GSH-Px) catalyzes certain reactions which remove reactive oxygen species such as peroxide:
Selenium also plays a role in the functioning of the thyroid gland by participating as a cofactor for the three known thyroid hormone deiodinases.[5]
Dietary selenium comes from nuts, cereals, meat, fish, and eggs. Brazil nuts are the richest ordinary dietary source (though this is soil-dependent, since the Brazil nut does not require high levels of the element for its own needs). High levels are found in kidney, tuna, crab and lobster, in that order.[6][7]
Certain species of plants are considered indicators of high selenium content in the soil, since they require high levels of selenium in order to thrive. The main selenium indicator plants are locoweed (Astragalus species), prince's plume (Stanleya sp.), woody asters (Xylorhiza sp.), and false goldenweed (Oonopsis sp.)[8]
Although selenium is an essential trace element, it is toxic if taken in excess. Exceeding the Tolerable Upper Intake Level of 400 micrograms per day can lead to selenosis.[9] Symptoms of selenosis include a garlic odor on the breath, gastrointestinal disorders, hair loss, sloughing of nails, fatigue, irritability and neurological damage. Extreme cases of selenosis can result in cirrhosis of the liver, pulmonary edema and death.[10]
Elemental selenium and most metallic selenides have relatively low toxicities because of their low bioavailability. By contrast, selenate and selenite are very toxic, the acute toxicity differs from the chronic toxicity which for selenite the chronic toxic dose for human beings is about 2400 to 3000 micrograms of selenium per day for a long time.[11] , and have an oxidant mode of action similar to that of arsenic. Hydrogen selenide is an extremely toxic, corrosive gas.[12] Selenium also occurs in organic compounds such as dimethyl selenide, selenomethionine, selenocysteine and methylselenocysteine, all of which have high bioavailability and are toxic in large doses. Nano-size selenium has equal efficacy, but much lower toxicity.[13][14][15][16][17][18][19]
Selenium poisoning of water systems may result whenever new agricultural runoff courses through normally dry undeveloped lands. This process leaches natural soluble selenium compounds (such as selenates) into the water, which may then be concentrated in new "wetlands" as the water evaporates. High selenium levels produced in this fashion have been found to have caused certain congenital disorders in wetland birds.[20]
Selenium deficiency is relatively rare in healthy well-nourished individuals. It can occur in patients with severely compromised intestinal function, those undergoing total parenteral nutrition, and also[21] on advanced aged people (over 90). Alternatively, people dependent on food grown from selenium-deficient soil are also at risk.
Selenium is a common byproduct of copper refining, or the production of sulfuric acid.[48][49][50] Isolation of selenium is often complicated by the presence of other compounds and elements. Commonly, production begins by oxidation with sodium carbonate to produce selenium dioxide. The selenium dioxide is then mixed with water producing selenous acid. The selenous acid is finally bubbled with sulfur dioxide producing elemental red amorphous selenium.
Selenium produced in chemical reactions invariably appears as the amorphous red form-- an insoluble brick red powder. When this form is rapidly melted, it forms the black, vitreous form which is usually sold industrially as beads. The most thermodynamically stable and dense form of selenium is the electrically conductive gray (trigonal) form, which is composed of long helical chains of selenium atoms. The conductivity of this form is notably light sensitive. Selenium also exists in three different deep red crystalline monoclinic forms, which are composed of Se8 molecules, similar to many allotropes of sulfur.[51]
Over three billion years ago, blue-green algae were the most primitive oxygenic photosynthetic organisms and are ancestors of multicellular eukaryotic algae.[54] Algae that contain the highest amount of antioxidant selenium, iodide and peroxidase enzymes, were the first living cells to produce poisonous oxygen in the atmosphere. Venturi et al.[54][55] suggested that algal cells required a protective antioxidant action, in which selenium and iodides, through peroxidase enzymes, have had this specific role. Selenium, which acts synergistically with iodine,[56] is a primitive mineral antioxidant, greatly present in the sea and prokaryotic cells, where it is an essential component of the family of glutathione peroxidase antioxidant enzymes (GSH-Px). In fact, seaweeds accumulate high quantity of selenium and iodine.[54] In 2008, Küpper et al.,[57] showed that iodide also scavenges reactive oxygen species (ROS) in algae, and that its biological role is that of an inorganic antioxidant, the first to be described in a living system, active also in today’s humans.
From about three billion years ago, prokaryotic selenoprotein families drive selenocysteine evolution. Selenium is incorporated into several prokaryotic selenoprotein families in bacteria, Archaea and eukaryotes as selenocysteine,[58] where selenoprotein peroxiredoxins protect bacterial and eukaryotic cells against oxidative damage. Selenoprotein families of GSH-Px and deiodinase of eukaryotic cells seem to have a bacterial phylogenetic origin. The selenocysteine-containing form occurred in green algae, diatoms, sea urchin, fish and chicken, too. One family of selenium-containing molecules as glutathione peroxidases repairs damaged cell membranes, while another (glutathione S-transferases) repairs damaged DNA and prevents mutations.[59]
When about 500 Mya, plants and animals began to transfer from the sea to rivers and land, the environmental deficiency of marine mineral antioxidants (as selenium, iodine, etc.) was a challenge to the evolution of terrestrial life.[54] Trace elements involved in GSH-Px and superoxide dismutases enzymes activities, i.e. selenium, vanadium, magnesium, copper and zinc, may have been lacking in some terrestrial mineral-deficient areas.[58] Marine organisms apparently retained and sometimes expanded their seleno-proteomes, whereas the seleno-proteomes of some terrestrial organisms were reduced or completely lost. These findings suggest that, with the exception of vertebrates, aquatic life supports selenium utilization, whereas terrestrial habitats lead to reduced use of this trace element.[60] Marine fishes and vertebrate thyroid glands have the highest concentra¬tion of selenium and iodine. From about 500 Mya, freshwater and terrestrial plants slowly optimized the production of “new” endogenous antioxidants such as ascorbic acid (Vitamin C), polyphenols, flavonoids, tocopherols etc. A few of these appeared more recently, in last 200-50 Mya, in fruits and flowers of angiosperm plants. In fact the angiosperms (the dominant type of plant today) and most of their antioxidant pigments evolved during the late Jurassic period.
The deiodinase isoenzymes constituted the second family of eukaryotic selenoproteins with identified enzyme function. Deiodinases are able to extract electrons from iodides, and iodides from iodothyronines. So, are involved in thyroid hormone regulation, participating in the protection of thyrocytes from damage by H2O2 produced for thyroid hormone biosynthesis.[54][55] About 200 Mya, new selenoproteins were developed as mammalian GSH-Px enzymes.[61][62][63][64]
Selenium occurs in the 0,+2,+4,+6 and -2 valance states. See also Selenium compounds and organoselenium chemistry.
Periodic table | |||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
H | He | ||||||||||||||||||||||||||||||||||||||||
Li | Be | B | C | N | O | F | Ne | ||||||||||||||||||||||||||||||||||
Na | Mg | Al | Si | P | S | Cl | Ar | ||||||||||||||||||||||||||||||||||
K | Ca | Sc | Ti | V | Cr | Mn | Fe | Co | Ni | Cu | Zn | Ga | Ge | As | Se | Br | Kr | ||||||||||||||||||||||||
Rb | Sr | Y | Zr | Nb | Mo | Tc | Ru | Rh | Pd | Ag | Cd | In | Sn | Sb | Te | I | Xe | ||||||||||||||||||||||||
Cs | Ba | La | Ce | Pr | Nd | Pm | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb | Lu | Hf | Ta | W | Re | Os | Ir | Pt | Au | Hg | Tl | Pb | Bi | Po | At | Rn | ||||||||||
Fr | Ra | Ac | Th | Pa | U | Np | Pu | Am | Cm | Bk | Cf | Es | Fm | Md | No | Lr | Rf | Db | Sg | Bh | Hs | Mt | Ds | Rg | Uub | Uut | Uuq | Uup | Uuh | Uus | Uuo | ||||||||||
|