Retrovirus

Retroviruses
Virus classification
Group: Group VI (ssRNA-RT)
Family: Retroviridae
Genera

Subfamily: Orthoretrovirinae

Alpharetrovirus
Betaretrovirus
Gammaretrovirus
Deltaretrovirus
Epsilonretrovirus
Lentivirus

Subfamily: Spumaretrovirinae

Spumavirus

A retrovirus is any virus belonging to the viral family Retroviridae. They are enveloped viruses possessing an RNA genome, and replicate via a DNA intermediate. Retroviruses rely on the enzyme reverse transcriptase to perform the reverse transcription of its genome from RNA into DNA, which can then be integrated into the host's genome with an integrase enzyme. The virus then replicates as part of the cell's DNA.

Contents

Description of virus

The virus itself stores its nucleic acid, in the form of a +mRNA (including the 5'cap and 3'PolyA inside the virion) genome and serves as a means of delivery of that genome into cells it targets as an obligate parasite, and constitutes the infection. Once in the host's cell, the RNA strands undergo reverse transcription in the cytosol and are integrated into the host's genome, at which point the retroviral DNA is referred to as a provirus. It is difficult to detect the virus until it has infected the host.

Virion Structure

Virions of retroviruses consist of enveloped particles about 100 nm in diameter. The virions also contain two identical single-stranded RNA molecules 7-10 kilobases (kb) in length. Although virions of different retroviruses do not have the same morphology or biology, all the virion components are very similar. [1]

The main virion components are:

Multiplication

When retroviruses have integrated their own genome into the germ line, their genome is passed on to a following generation. These endogenous retroviruses, contrasted with exogenous ones, now make up 5-8% of the human genome.[3] Most insertions have no known function and are often referred to as "junk DNA". However, many endogenous retroviruses play important roles in host biology, such as control of gene transcription, cell fusion during placental development in the course of the germination of an embryo, and resistance to exogenous retroviral infection. Endogenous retroviruses have also received special attention in the research of immunology-related pathologies, such as autoimmune diseases like multiple sclerosis, although endogenous retroviruses have not yet been proven to play any causal role in this class of disease. The role of endogenous retroviruses in human gene evolution is explored in a 2005 peer-reviewed article.[4]

While transcription was classically thought to only occur from DNA to RNA, reverse transcriptase transcribes RNA into DNA. The term "retro" in retrovirus refers to this reversal (making DNA from RNA) of the central dogma of molecular biology. Reverse transcriptase activity outside of retroviruses has been found in almost all eukaryotes, enabling the generation and insertion of new copies of retrotransposons into the host genome. These inserts are transcriped by host's enzymes into new RNA molecules which enter the cytosol. Next, some of these RNA molecules are translated into viral proteins. For example, the gag gene is translated into molecules of the capsid protein, the pol gene is transcribed into molecules of reverse transcriptase, and the env gene is translated into molecules of the envelope protein. It is important to note that a retrovirus must "bring" its own reverse transcriptase in its capsid, otherwise it is unable to utilize the infected cell's enzymes to carry out the task, due to the unusual nature of producing DNA from RNA.

Industrial drugs that are designed as protease and reverse transcriptase inhibitors can quickly be proved ineffective because the gene sequences that code for the protease and the reverse transcriptase can undergo many substitutions. These substitutions of nitrogenous bases, which make up the DNA strand, can make either the protease or the reverse transcriptase difficult to attack. The amino acid substitution enables the enzymes to evade the drug regiments because mutations in the gene sequences can cause physical or chemical change which makes them harder to detect by the drug. When the drugs that are supposed to attack enzymes, such as protease, are designed, the manufacturers target specific sites on the enzyme. One way to attack these targets can be through hydrolysis of molecular bonds, which means that the drug will add molecules of H2O (water) to specific bonds. By adding molecules of water at a site on the virus, the drug breaks the previous bonds that were linked to each other. If several of these breaks occur, the result can lead to lysis, the death of the virus. [5]

Because reverse transcription lacks the usual proofreading of DNA replication, a retrovirus mutates very often. This enables the virus to grow resistant to antiviral pharmaceuticals quickly, and impedes the development of effective vaccines and inhibitors for the retrovirus.[6]

Genes

Retrovirus genomes commonly contain these three open reading frames that encode for proteins that can be found in the mature virus:

Provirus

This DNA can be incorporated into host genome as a provirus that can be passed on to progeny cells. In this way some retroviruses can convert normal cells into cancer cells. Some provirus remains latent in the cell for a long period of time before it is activated by the change in cell environment.

Development of retroviruses

Studies of retroviruses led to the first demonstrated synthesis of DNA from RNA templates, a fundamental mode for transferring genetic material that occurs in both eukaryotes and prokaryotes. It has been speculated that the RNA to DNA transcription processes used by retroviruses may have first caused DNA to be used as genetic material. In this model, the RNA world hypothesis, cellular organisms adopted the more chemically stable DNA when retroviruses evolved to create DNA from the RNA templates.

Classification

Exogenous

The following genera are included here:

These were previously divided into three subfamilies (Oncovirinae, Lentivirinae, and Spumavirinae), but with current knowledge of retroviruses, this is no longer appropriate. (The term oncovirus is still commonly used, though.)

Endogenous

Main article: endogenous retrovirus

Endogenous retroviruses are not formally included in this classification system, and are broadly classified into three classes, on the basis of relatedness to exogenous genera:

Treatment

Main article: Antiretroviral drug

Antiretroviral drugs are medications for the treatment of infection by retroviruses, primarily HIV. Different classes of antiretroviral drugs act at different stages of the HIV life cycle. Combination of several (typically three or four) antiretroviral drugs is known as highly active anti-retroviral therapy (HAART).

Genetic barrier

The genetic barrier is loosely defined as the difficulty for retroviruses to evade antiretroviral drugs by mutating into resistant types. [7]

References

  1. Jhon M. Coffin (1992). "Structure and Classification of Retroviruses". in Jay A. Levy. The Retroviridae (1st ed.). New York: Plenum Press. pp. 20. ISBN 0-306-44074-1. 
  2. Jhon M. Coffin (1992). "Structure and Classification of Retroviruses". in Jay A. Levy. The Retroviridae (1st ed.). New York: Plenum Press. pp. 26-34. ISBN 0-306-44074-1. 
  3. Robert Belshaw; Pereira V; Katzourakis A; Talbot G; Paces J; Burt A; Tristem M. (April 2004). "Long-term reinfection of the human genome by endogenous retroviruses". Proc Natl Acad Sci U S A 101 (14): 4894–99. doi:10.1073/pnas.0307800101. PMID 15044706. http://www.pubmedcentral.com/articlerender.fcgi?artid=387345. 
  4. Medstrand P, van de Lagemaat L, Dunn C, Landry J, Svenback D, Mager D (2005). "Impact of transposable elements on the evolution of mammalian gene regulation". Cytogenet Genome Res 110 (1-4): 342–52. doi:10.1159/000084966. PMID 16093686. 
  5. {{|Teklemariam, Ephrem |http://mason.gmu.edu/~eteklema/Researchfinal.html |HIV drug resistance and its impact on public health.|joRes
  6. Svarovskaia ES; Cheslock SR; Zhang WH; Hu WS; Pathak VK. (January 2003). "Retroviral mutation rates and reverse transcriptase fidelity.". Front Biosci. 8: 117–134. doi:10.2741/957. http://www.ncbi.nlm.nih.gov/pubmed/12456349. 
  7. Computing the genetic barrier N. Beerenwinkel, T. Sing, M. Daumer, R. Kaiser, T. Lengauer.

External links