Acrylic glass

Acrylic glass
PMMA repeating unit.svg
Other names poly(methyl methacrylate) (PMMA)
methyl methacrylate resin
Identifiers
CAS number 9011-14-7
SMILES
Properties
Molecular formula (C5O2H8)n
Molar mass varies
Density 1.19 g/cm³
Melting point

130–140 °C (265–285 °F)

Boiling point

200.0 °C (392 °F)

Except where noted otherwise, data are given for
materials in their standard state
(at 25 °C, 100 kPa)
Infobox references

Poly(methyl methacrylate) (PMMA) poly(methyl 2-methylpropenoate) is a thermoplastic and transparent plastic. Chemically, it is the synthetic polymer of methyl methacrylate. It is sold by the tradenames Plexiglas, Vitroflex, Limacryl, R-Cast, Per-Clax, Perspex, Plazcryl, Acrylex, Acrylite, Acrylplast, Altuglas, Polycast, Oroglass and Lucite and is commonly called acrylic glass, simply acrylic or plexiglas. Acrylic, or acrylic fiber, can also refer to polymers or copolymers containing polyacrylonitrile. The material was developed in 1928 in various laboratories and was brought to market in 1933 by Rohm and Haas Company.

PMMA is often used as an alternative to glass, and in competition with polycarbonate (PC). It is often preferred because of its moderate properties, easy handling and processing, and low cost, but behaves in a brittle manner when loaded, especially under an impact force. To produce 1 kg of PMMA, about 2 kg of petroleum is needed. PMMA ignites at 460°C and burns completely to form only carbon dioxide and water.

Contents

History

The first acrylic acid was created in 1843. Methacrylic acid, derived from acrylic acid, was formulated in 1865. The reaction between methacrylic acid and methyl alcohol results in the ester methyl methacrylate. The German chemists Fittig and Paul discovered in 1877 the polymerization process that turns methyl methacrylate into polymethyl methacrylate. In 1933 the German chemist Otto Röhm patented and registered the brand name PLEXIGLAS. In 1936 the first commercially viable production of acrylic safety glass began. During World War II acrylic glass was used for submarine periscopes, and windshields, canopies, and gun turrets for airplanes. [1]

Synthesis

PMMA is routinely produced by emulsion polymerization, solution polymerization and bulk polymerization. Generally radical initiation is used (including living polymerization methods), but anionic polymerization of PMMA can also be performed.

Processing

Thermoplastic PMMA is typically processed at 240–250 °C. All common molding processes may be used, including injection molding, compression molding and extrusion. The highest quality PMMA sheets are produced by cell casting, but in this case, the polymerization and molding steps occur concurrently. The strength of the material is higher than molding grades owing to its extremely high molecular mass. Rubber toughening has been used to increase the strength of PMMA owing to its brittle behavior in response to applied loads.

PMMA can be joined using cyanoacrylate cement (so-called "Superglue"), with heat (melting), or by using solvents such as di- or trichloromethane to dissolve the plastic at the joint which then fuses and sets, forming an almost invisible weld.

Scratches may easily be removed by polishing or by heating the surface of the material.

Laser cutting may be used to form intricate designs from PMMA sheets. PMMA vaporises to gaseous compounds (including its monomers) upon laser cutting, so a very clean cut is made, and cutting is performed very easily. In this respect PMMA has an advantage over competing polymers such as polystyrene and polycarbonate, which require higher laser powers and give more messy and charred laser cuts.

Properties

PMMA:

Skeletal structure of methyl methacrylate, the monomer that makes up PMMA
Structure of the PMMA polymer

Modification of properties

Pure poly(methyl methacrylate) homopolymer is rarely sold as an end product, since it is not optimized for most applications. Rather, modified formulations with varying amounts of other comonomers, additives, and fillers are created for uses where specific properties are required. For example,

Related polymer poly(methyl acrylate)

The polymer of methyl acrylate, PMA or poly(methyl acrylate), is similar to poly(methyl methacrylate), except for the lack of methyl groups on the backbone carbon chain.[3] PMA is a soft white rubbery material that is softer than PMMA because its long polymer chains are thinner and smoother and can more easily slide past each other.

Uses

PMMA or Acrylic is a versatile material and has been used in a wide range of fields and applications.

Impact resistant substitute for glass

Daylight redirection

Medical technologies and implants

Artistic and aesthetic uses

Other uses

High heel shoes made of Lucite
An electric bass guitar with its body made out of perspex

See also

References

External links