An operon is a functioning unit of key nucleotide sequences of DNA including an operator, a common promoter, and one or more structural genes, which is controlled as a unit to produce messenger RNA (mRNA), in the process of transcription by an RNA polymerase.
Contents |
Operons occur primarily in prokaryotes but also in some eukaryotes, including nematodes. An operon is made up of several structural genes arranged under a common promoter and regulated by a common operator. The regulators of a given operon, including repressors, corepressors, and activators, are not necessarily coded for by that operon. The location and condition of the regulators, promoter, operator and structural DNA sequences can determine the effects of common mutations.
The first operon to be described was the lac-operon in Escherichia coli in
Operons are related to regulons and stimulons. Whereas operons contain a set of genes regulated by the same operator, regulons contain a set of genes under regulation by a single regulatory protein, and stimulons contain a set of genes under regulation by a single cell stimulus.
An operon contains one or more structural genes which are transcribed into one polycistronic mRNA: a single mRNA molecule that codes for more than one protein. Upstream of the structural genes lies a promoter sequence which provides a site for RNA polymerase to bind and initiate transcription. Close to the promoter lies a section of DNA called an operator. The operon may also contain regulatory genes such as a repressor gene which codes for a regulatory protein that binds to the operator and inhibits transcription. Regulatory genes need not be part of the operon itself, but may be located elsewhere in the genome. The repressor molecule will reach the operator to block the transcription of the structural genes.
A promoter is a DNA sequence that enables a gene to be transcribed. The promoter is recognized by RNA polymerase, which then initiates transcription. In RNA synthesis, promoters indicate which genes should be used for messenger RNA creation - and, by extension, control which proteins the cell manufactures.
An operator is a segment of DNA that a regulatory protein binds to. It is classically defined in the lac operon as a segment between the promoter and the genes of the operon[1]. A repressor or activator can bind to an operon.
Control of an operon is a type of gene regulation that enables organisms to regulate the expression of various genes depending on environmental conditions. Operon regulation can be either negative or positive by induction or repression.[1]
Negative control involves the binding of a repressor to the operator to prevent transcription.
Operons can also be positively controlled. With positive control, an activator protein stimulates transcription by binding to DNA (usually at a site other than the operator).
The lac operon of the model bacterium Escherichia coli was the first operon to be discovered and provides a typical example of operon function. It consists of three adjacent structural genes, a promoter, a terminator, and an operator. The lac operon is regulated by several factors including the availability of glucose and lactose.
Discovered in 1953 by Jacques Monod and colleagues, the trp operon in E. coli was the first repressible operon to be discovered. While the lac operon can be activated by a chemical (allolactose), the tryptophan (Trp) operon is inhibited by a chemical (tryptophan). This operon contains five structural genes: trp E, trp D, trp C, trp B, and trp A, which encodes tryptophan synthetase. It also contains a promoter which binds to RNA polymerase and an operator which blocks transcription when bound to the protein synthesized by the repressor gene (trp R) that binds to the operator. In the lac operon, lactose binds to the repressor protein and prevents it from repressing gene transcription, while in the trp operon, tryptophan binds to the repressor protein and enables it to repress gene transcription. Also unlike the lac operon, the trp operon contains a leader peptide and an attenuator sequence which allows for graded regulation.[2]
The number and organization of operons has been studied most critically in E. coli. As a result, predictions can be made based on an organism's genomic sequence.
One prediction method uses the intergenic distance between reading frames as a primary predictor of the number of operons in the genome. The separation merely changes the frame and guarantees that the read through is efficient. Longer stretches exist where operons start and stop, often up to 40-50 bases [3].
An alternative method to predict operons is based on finding gene clusters where gene order and orientation is conserved in two or more genomes [4].
Operon prediction is even more accurate if the functional class of the molecules is considered. Bacteria have clustered their reading frames into units, sequestered by co-involvement in protein complexes, common pathways, or shared substrates and transporters. Thus, accurate prediction would involve all of these data, a difficult task indeed.
|
|