Lawrence Livermore National Laboratory

Lawrence Livermore National Laboratory
LLNL logo.png
Motto "Science in the national interest"
Established 1952 by the University of California
Research Type National security, nuclear science
Budget US$1.6 billion
Director George H. Miller
Staff 6,800
Location Livermore, California
Campus 3.2 km² (800 acres)
Operating Agency Lawrence Livermore National Security, LLC
Website www.llnl.gov

The Lawrence Livermore National Laboratory (LLNL) in Livermore, California is a scientific research laboratory founded by the University of California in 1952. It is funded by the United States Department of Energy (DOE) and managed by Lawrence Livermore National Security, LLC (LLNS), a partnership of the University of California, Bechtel Corporation, Babcock and Wilcox, the URS Corporation, and Battelle Memorial Institute. On October 1, 2007 LLNS assumed management of LLNL from the University of California, which had exclusively managed and operated the Laboratory since its inception 55 years before.

Contents

Background

Aerial view of Lawrence Livermore National Laboratory

LLNL is self-described as "a premier research and development institution for science and technology applied to national security."[1] Its principal responsibility is ensuring the safety, security and reliability of the nation’s nuclear weapons through the application of advanced science, engineering and technology. The Laboratory also applies its special expertise and multidisciplinary capabilities to preventing the proliferation and use of weapons of mass destruction, bolstering homeland security and solving other nationally important problems, including energy and environmental security, basic science and economic competitiveness.

LLNL is home to many unique facilities and a number of the most powerful computer systems in the world, according to the TOP500 list, including Blue Gene/L, the world's fastest computer from 2004 until Los Alamos National Laboratory's Roadrunner supercomputer surpassed it in 2008. The Lab is a leader in technical innovation: since 1978, LLNL has received a total of 118 prestigious R&D 100 Awards, including five in 2007. [2] The awards are given annually by the editors of R&D Magazine to the most innovative ideas of the year.

The Laboratory is located on a one-square-mile (2.6-km2) site at the eastern edge of Livermore, California. It also operates a 7000-acre remote experimental test site, called Site 300, situated about 15 miles (24 km) southeast of the main Lab site. LLNL has an annual budget of about US$1.5 billion and a staff of roughly 7,000 employees.

Origins

LLNL was established in 1952 as the Lawrence Radiation Laboratory at Livermore as an offshoot of the existing University of California Radiation Laboratory at Berkeley. It was intended to spur innovation and provide competition to the nuclear weapon design laboratory at Los Alamos, New Mexico, home of the Manhattan Project that developed the first atomic weapons. Edward Teller and Ernest O. Lawrence, director of the Radiation Laboratory at Berkeley, are regarded as the co-founders of the Livermore Laboratory.

The new laboratory was sited was at a former Naval Air Base and training station in Livermore, California. The site was already home to several University of California Radiation Laboratory projects that were too large for its location in the hills above the Berkeley campus, including one of the first experiments in the magnetic approach to confined thermonuclear reactions (i.e., fusion).

E.O. Lawrence tapped 32-year-old Herbert York, a former graduate student of his, to run the Livermore Laboratory. Under York, the Lab had four main programs: Project Sherwood (the Magnetic Fusion Program), Project Whitney (the weapons design program), diagnostic weapon experiments (both for the Los Alamos and Livermore laboratories) and a basic physics program. York also saw to it that the new lab embraced the E.O. Lawrence “big science” approach, tackling challenging projects with physicists, chemists, engineers, and computational scientists working together in multidisciplinary teams.

Historically, the Berkeley and Livermore laboratories have had very close relationships on research projects, business operations and staff. The Livermore Lab was established initially as a branch of the Berkeley Laboratory. Both labs are named after E.O. Lawrence, and the Livermore Lab was not officially severed administratively from the Berkeley Lab until the early 1970s. To this day, in official planning documents and records, Lawrence Berkeley National Laboratory is designated as Site 100, Lawrence Livermore National Lab as Site 200, and LLNL's remote test location as Site 300. [3]

The laboratory became known as the Lawrence Livermore Laboratory in 1971.

Weapons projects

From its inception, Livermore focused on innovative weapon design concepts; as a result, its first three nuclear tests were unsuccessful. However, the Lab persevered and its subsequent designs proved increasingly successful. In 1957, the Livermore Lab was selected to develop the warhead for the Navy’s Polaris missile. This warhead required numerous innovations to fit a nuclear warhead into the relatively small confines of the missile nosecone.[4]

During the decades of the Cold War, more than a score of Livermore-designed warheads entered the nation’s nuclear stockpile, ranging in size from the Lance surface-to-air tactical missile to the megaton-class Spartan antiballistic missile warhead. Over the years, LLNL designed the following warheads: W27 (Regulus cruise missile; 1955; joint with Los Alamos), W38 (Atlas/Titan ICBM; 1959), B41 (B52 bomb; 1957), W45 (Little John/Terrier missiles; 1956), W47 (Polaris SLBM; 1957), W48 (155-mm howitzer; 1957), W55 (submarine rocket; 1959), W56 (Minuteman ICBM; 1960), W58 (Polaris SLBM; 1960), W62 (Minuteman ICBM; 1964), W68 (Poseidon SLBM; 1966), W70 (Lance missile; 1969), W71 (Spartan missile; 1968), W79 (8-in. artillery gun; 1975), W82 (155-mm howitzer; 1978), B83 (modern strategic bomb; 1979), W87 (Peacekeeper/MX ICBM; 1982), and W89 (Tomahawk GLCM; 1978). The W87 and the B83 are the only LLNL designs still in the U.S. nuclear stockpile. [5][6][7]

With the collapse of the Soviet Union and the end of the Cold War, the United States began a moratorium on nuclear testing and development of new nuclear weapon designs. To sustain existing warheads for the indefinite future, a science-based Stockpile Stewardship Program (SSP) was defined that emphasized the development and application of greatly improved technical capabilities to assess the safety, security, and reliability of existing nuclear warheads without the use of nuclear testing. Confidence in the performance of weapons, without nuclear testing, is maintained through an ongoing process of stockpile surveillance, assessment and certification, and refurbishment or weapon replacement.

With no new designs of nuclear weapons, the warheads in the U.S. stockpile must continue to function far past their original expected lifetimes. As components and materials age, problems can arise. Stockpile Life Extension Programs can extend system lifetimes, but they also can introduce performance uncertainties and require maintenance of outdated technologies and materials. Because there is concern that it will become increasingly difficult to maintain high confidence in the current warheads for the long term, the Department of Energy/National Nuclear Security Administration initiated the Reliable Replacement Warhead (RRW) Program. RRW designs could reduce uncertainties, ease maintenance demands, and enhance safety and security. In March 2007, the LLNL design was chosen for the Reliable Replacement Warhead. [8] Since that time, however, Congress has not allocated funding for any further development of the RRW.

Plutonium research

LLNL conducts research into the properties and behavior of plutonium to learn how plutonium performs as it ages and how it behaves under high pressure (e.g., with the impact of high explosives). Plutonium is a complex and perplexing element. For instance, it has seven temperature-dependent solid phases—more than any other element in the periodic table. Each phase possesses a different density and volume and has its own characteristics. Alloys of plutonium are even more complex; multiple phases can be present in a sample at any given time. Experiments are being conducted at LLNL and elsewhere to measure the structural, electrical and chemical properties of plutonium and its alloys and to determine how these materials change over time. Such measurements will enable scientists to better model and predict plutonium's long-term behavior in the aging stockpile. [9]

The Lab’s plutonium research is conducted in a specially designed, ultra-safe, and highly secure facility called the SuperBlock. Work with highly enriched uranium is also conducted here. In March 2008, the National Nuclear Security Administration presented its preferred alternative for the transformation of the nation’s nuclear weapons complex. Under this plan, LLNL would be a center of excellence for nuclear design and engineering, a center of excellence for high explosive research and development, and a science magnet in high-energy-density (i.e., laser) physics. In addition, most of its special nuclear material would be removed and consolidated at a more central, yet-to-be-named site. [10]

National Ignition Facility and photon science

The National Ignition Facility (NIF) Project and related programs -- the National Ignition Campaign, Photon Science and Applications, Inertial Fusion Energy and Science at the Extremes -- are pursuing three complementary missions:

Global security program

The Lab’s work in global security aims to reduce and mitigate the dangers posed by the spread or use of weapons of mass destruction and by threats to energy and environmental security. Livermore has been working on global security and homeland security for decades, predating both the collapse of the Soviet Union in 1991 and the September 11, 2001, terrorist attacks. LLNL staff have been heavily involved in the cooperative nonproliferation programs with Russia to secure at-risk weapons materials and assist former weapons workers in developing peaceful applications and self-sustaining job opportunities for their expertise and technologies. In the mid-1990s, Lab scientists began efforts to devise improved biodetection capabilities, leading to miniaturized and autonomous instruments that can detect biothreat agents in a few minutes instead of the days to weeks previously required for DNA analysis.

Today, Livermore researchers address the full spectrum of threats – radiological/nuclear, chemical, biological, explosives, and cyber. They combine physical and life sciences, engineering, computations, and analysis to develop technologies that solve real-world problems. Activities are grouped into five programs:

Other programs

LLNL supports capabilities in a broad range of scientific and technical disciplines, applying current capabilities to existing programs and developing new science and technologies to meet future national needs.

Key accomplishments

Over its 55-year history, Lawrence Livermore has made many scientific and technological achievements, including [12]:

Unique facilities

World-class computers

Throughout its history, LLNL has been a leader in computers and scientific computing. Even before the Livermore Lab opened its doors, E.O. Lawrence and Edward Teller recognized the importance of computing and the potential of computational simulation. Their purchase of one of the first UNIVAC computers, set the precedent for LLNL’s history of acquiring and exploiting the fastest and most capable supercomputers in the world. A succession of increasingly powerful and fast computers have been used at the Lab over the years:

The November 2007 release of the 30th TOP500 list of the 500 most powerful computer systems in the world, has LLNL’s BlueGene/L computer in first place for the seventh consecutive time. Five other LLNL computers are in the top 100.

On June 22, 2006, researchers at LLNL announced that they had devised a scientific software application that sustained 207.3 trillion operations per second. This was the equivalent of an online game capable of handling 300 million simultaneous players. The record performance was made at LLNL on BlueGene/L, the world's fastest supercomputer with 131,072 processors. The record was a milestone in the evolution of predictive science, a field in which researchers use supercomputers to answer questions about such subjects as: materials science simulations, global warming, and reactions to natural disasters.

LLNL has a long history of developing computing software and systems. Initially, there was no commercially available software, and computer manufacturers considered it the customer’s responsibility to develop their own. Users of the early computers had to write not only the codes to solve their technical problems, but also the routines to run the machines themselves. Today, LLNL computer scientists focus on creating the highly complex physics models, visualization codes, and other unique applications tailored to specific research requirements. A great deal of software also has been written by LLNL personnel to optimize the operation and management of the computer systems, including operating system extensions such as CHAOS (Linux Clustering) and resource management packages such as SLURM. [13] The Peloton procurements in late 2006 (Atlas and other computers) were the first in which a commercial resource management package, Moab, was used to manage the clusters. [14]

Sponsors

LLNL's principal sponsor is the Department of Energy/National Nuclear Security Administration (DOE/NNSA) Office of Defense Programs, which supports its stockpile stewardship and advanced scientific computing programs. Funding to support LLNL's global security and homeland security work comes from the DOE/NNSA Office of Defense Nuclear Nonproliferation as well as the Department of Homeland Security. LLNL also receives funding from DOE’s Office of Science, Office of Civilian Radioactive Waste Management, and Office of Nuclear Energy. In addition, LLNL conducts work-for-others research and development for various Defense Department sponsors, other federal agencies, including NASA, Nuclear Regulatory Commission (NRC), National Institutes of Health, and Environmental Protection Agency, a number of California State agencies, and private industry.

Directors

The LLNL Director is appointed by the Board of Governors of Lawrence Livermore National Security, LLC (LLNS) and reports to the board. The Laboratory Director also serves as the President of LLNS. Over the course of its 55 year history, ten eminent scientists have served as LLNL Director:

Organization

The LLNL Director is supported by a senior executive team consisting of the Deputy Director, Principal Associate Directors, Director of Security, and Director of Environment, Safety, Health, and Quality. The organizations of the Laboratory Counsel, Audit and Oversight, Chief Financial Officer, and Contractor Assurance also report to the Laboratory Director.

The Lab is organized into five principal directorates:

Footnotes

  1. "Missions & Programs". Lawrence Livermore National Laboratory (13 February 2008). Retrieved on 2008-03-19.
  2. "R&D 2007 Award Index of Winners". R&D Technologies & Strategies for Research & Development (16 August 2008). Retrieved on 2008-05-20.
  3. "Science and Technology Review (September 1998)". "A Short History of the Laboratory at Livermore". 
  4. "Global Security" (27 April 2005). "["http://www.globalsecurity.org/wmd/intro/miniaturization.htm" "Weapons of Mass Destruction: Miniaturization"]". Retrieved on 2008-06-03.
  5. James N. Gibson (14 October 2006). "Complete List of All U.S. Nuclear Weapons". The Nuclear Weapon Archive. Retrieved on 2008-03-19.
  6. "U.S. Nuclear Weapon Enduring Stockpile". The Nuclear Weapon Archive (31 August 2007). Retrieved on 2008-03-19.
  7. "Nuclear Weapons Stockpile Stewardship". Lawrence Livermore National Laboratory (13 February 2008). Retrieved on 2008-03-19.
  8. Scott Lindlaw (2 March 2007). "Bush Administration Picks Lawrence Livermore Warhead Design", The San Francisco Chronicle. Retrieved on 2008-03-19. 
  9. "Plutonium Up Close…Way Close". Lawrence Livermore National Laboratory. Retrieved on 2008-05-20.
  10. (PDF)[www.nnsa.energy.gov/defense_programs/documents/LivermoreFactSheet_v8.pdf Lawrence Livermore National Laboratory Fact Sheet for NNSA Complex Transformation - Preferred Alternative]. Lawrence Livermore National Laboratory. www.nnsa.energy.gov/defense_programs/documents/LivermoreFactSheet_v8.pdf. Retrieved on 2008-05-20. 
  11. "National Ignition Facility and Photon Science: The Power of Light". Lawrence Livermore National Laboratory. Retrieved on 2008-05-20.
  12. "Lawrence Livermore National Laboratory". Lawrence Livermore National Laboratory. Retrieved on 2008-05-20.
  13. "Linux at Livermore". Lawrence Livermore National Laboratory. Retrieved on 2007-02-28.
  14. "Peloton Capability Cluster". Lawrence Livermore National Laboratory. Retrieved on 2007-02-28.

References

External links and sources