Hyperlipidemia Classification and external resources |
|
ICD-10 | E78. |
---|---|
ICD-9 | 272.0-272.4 |
DiseasesDB | 6255 |
MeSH | D006949 |
Hyperlipidemia, hyperlipoproteinemia or dyslipidemia is the presence of raised or abnormal levels of lipids and/or lipoproteins in the blood. Lipids (fatty molecules) are transported in a protein capsule, and the density of the lipids and type of protein determines the fate of the particle and its influence on metabolism.
Lipid and lipoprotein abnormalities are extremely common in the general population, and are regarded as a highly modifiable risk factor for cardiovascular disease due to the influence of cholesterol, one of the most clinically relevant lipid substances, on atherosclerosis. In addition, some forms may predispose to acute pancreatitis.
Contents |
Hyperlipidemias are classified according to the Fredrickson classification which is based on the pattern of lipoproteins on electrophoresis or ultracentrifugation.[1] It was later adopted by the World Health Organization (WHO). It does not directly account for HDL, and it does not distinguish among the different genes that may be partially responsible for some of these conditions. It remains a popular system of classification, but is considered dated by many.
Hyperlipoproteinemia | Synonyms | Problems | Labs description | Treatment |
---|---|---|---|---|
Type I | Buerger-Gruetz syndrome, Primary hyperlipoproteinaemia, or Familial hyperchylomicronemia | Decreased lipoprotein lipase (LPL) or altered ApoC2 | Elevated Chylomicrons | Diet Control |
Type IIa | Polygenic hypercholesterolaemia or Familial hypercholesterolemia | LDL receptor deficiency | Elevated LDL only | Bile Acid Sequestrants, Statins, Niacin |
Type IIb | Combined hyperlipidemia | Decreased LDL receptor and Increased ApoB | Elevated LDL and VLDL and Triglycerides | Statins, Niacin, Fibrate |
Type III | Familial Dysbetalipoproteinemia | Defect in ApoE synthesis | Increased IDL | Drug of choice: Fibrate |
Type IV | Familial Hyperlipemia | Increased VLDL production and Decreased elimination | Increased VLDL | Drug of choice: Fibrate, Niacin |
Type V | Endogenous Hypertriglyceridemia | Increased VLDL production and Decreased LPL | Increased VLDL and Chylomicrons | Niacin, Fibrate |
This very rare form (also known as Buerger-Gruetz syndrome, primary hyperlipoproteinaemia, or familial hyperchylomicronemia) is due to a deficiency of lipoprotein lipase (LPL) or altered apolipoprotein C2, resulting in elevated chylomicrons, the particles that transfer fatty acids from the digestive tract to the liver. Lipoprotein lipase is also responsible for the initial breakdown of endogenously made triacylglycerides in the form of very low density lipoprotein (VLDL). As such, one would expect a defect in LPL to also result in elevated VLDL. Its prevalence is 0.1% of the population.
Hyperlipoproteinemia type II, by far the most common form, is further classified into type IIa and type IIb, depending mainly on whether there is elevation in the triglyceride level in addition to LDL cholesterol.
This may be sporadic (due to dietary factors), polygenic, or truly familial as a result of a mutation either in the LDL receptor gene on chromosome 19 (0.2% of the population) or the ApoB gene (0.2%). The familial form is characterized by tendon xanthoma, xanthelasma and premature cardiovascular disease. The incidence of this disease is about 1 in 500 for heterozygotes, and 1 in 1,000,000 for homozygotes.
The high VLDL levels are due to overproduction of substrates, including triglycerides, acetyl CoA, and an increase in B-100 synthesis. They may also be caused by the decreased clearance of LDL. Prevalence in the population is 10%.
While dietary modification is the initial approach, many patients require treatment with statins (HMG-CoA reductase inhibitors) to reduce cardiovascular risk. If the triglyceride level is markedly raised, fibrates may be preferable due to their beneficial effects. Combination treatment of statins and fibrates, while highly effective, causes a markedly increased risk of myopathy and rhabdomyolysis and is therefore only done under close supervision. Other agents commonly added to statins are ezetimibe, niacin and bile acid sequestrants. There is some evidence for benefit of plant sterol-containing products and ω3-fatty acids[2]
This form is due to high chylomicrons and IDL (intermediate density lipoprotein). Also known as broad beta disease or dysbetalipoproteinemia, the most common cause for this form is the presence of ApoE E2/E2 genotype. It is due to cholesterol-rich VLDL (β-VLDL). Prevalence is 0.02% of the population.
This form is due to high triglycerides. It is also known as hypertriglyceridemia (or pure hypertriglyceridemia). According to the NCEP-ATPIII definition of high triglycerides (>200 mg/dl), prevalence is about 16% of adult population.[3]
This type is very similar to type I, but with high VLDL in addition to chylomicrons.
It is also associated with glucose intolerance and hyperuricemia
Non-classified forms are extremely rare:
Hyperlipoproteinemia | OMIM | GPnotebook | WebMD | Others |
---|---|---|---|---|
Type I | Online 'Mendelian Inheritance in Man' (OMIM) 238600 | -1389035478 at GPnotebook | . | MeritCare |
Type IIa | Online 'Mendelian Inheritance in Man' (OMIM) 144400 | -1664090094 at GPnotebook | . | Merck |
Type IIb | -1375338454 at GPnotebook | . | ||
Type III | . | 630849560 at GPnotebook | WebMD | Yahoo |
Type IV | Online 'Mendelian Inheritance in Man' (OMIM) 144600 | -1362100182 at GPnotebook | WebMD | Yahoo |
Type V | Online 'Mendelian Inheritance in Man' (OMIM) 144600 | -1355481046 at GPnotebook | . | . |
|