Gastrointestinal tract

Salivary glands Pharynx Tongue Esophagus Pancreas Stomach Anus Rectum Vermiform appendix Gallbladder Liver

Upper and Lower gastrointestinal tract

The digestive tract (also known as the alimentary canal) is the system of organs within multicellular animals that takes in food, digests it to extract energy and nutrients, and expels the remaining waste. The major functions of the GI tract are ingestion, digestion, absorption, and defecation. The picture to the right doesn't show the Jejunum. The GI tract differs substantially from animal to animal. Some animals have multi-chambered stomachs, while some animals' stomachs contain a single chamber. In a normal human adult male, the GI tract is approximately 6.5 meters (20 feet) long and consists of the upper and lower GI tracts. The tract may also be divided into foregut, midgut, and hindgut, reflecting the embryological origin of each segment of the tract.[1]

Contents

Upper gastrointestinal tract

The upper GI tract consists of the mouth, pharynx, esophagus, and stomach.

Lower gastrointestinal tract

The lower GI tract comprises the intestines and anus.

Accessory organs

Accessory organs to the alimentary canal include the liver, gallbladder, and pancreas. The liver secretes bile into the small intestine via the biliary system, employing the gallbladder as a reservoir. Apart from storing and concentrating bile, the gallbladder has no other specific function. The pancreas secretes an isosmotic fluid containing bicarbonate and several enzymes, including trypsin, chymotrypsin, lipase, and pancreatic amylase, as well as nucleolytic enzymes (deoxyribonuclease and ribonuclease), into the small intestine. Both of these secretory organs aid in digestion.

Embryology

The gut is an endoderm-derived structure. At approximately the 16th day of human development, the embryo begins to fold ventrally (with the embryo's ventral surface becoming concave) in two directions: the sides of the embryo fold in on each other and the head and tail fold towards one another. The result is that a piece of the yolk sac, an endoderm-lined structure in contact with the ventral aspect of the embryo, begins to be pinched off to become the primitive gut. The yolk sac remains connected to the gut tube via the vitelline duct. Usually this structure regresses during development; in cases where it does not, it is known as Meckel's diverticulum.

During fetal life, the primitive gut can be divided into three segments: foregut, midgut, and hindgut. Although these terms are often used in reference to segments of the primitive gut, they are nevertheless used regularly to describe components of the definitive gut as well.

Each segment of the primitive gut gives rise to specific gut and gut-related structures in the adult. Components derived from the gut proper, including the stomach and colon, develop as swellings or dilatations of the primitive gut. In contrast, gut-related derivatives—that is, those structures that derive from the primitive gut but are not part of the gut proper—in general develop as outpouchings of the primitive gut. The blood vessels supplying these structures remain constant throughout development.[2]

part part in adult Gives rise to Arterial supply
foregut the pharynx, to the upper duodenum pharynx, esophagus, stomach, upper duodenum, respiratory tract (including the lungs), liver, gallbladder, and pancreas branches of the celiac artery
midgut lower duodenum, to the first two-thirds of the transverse colon lower duodenum, jejunum, ileum, cecum, appendix, ascending colon, and first two-thirds of the transverse colon branches of the superior mesenteric artery
hindgut last third of the transverse colon, to the upper part of the anal canal last third of the transverse colon, descending colon, rectum, and upper part of the anal canal branches of the inferior mesenteric artery

Physiology

Specialization of organs

Four organs are subject to specialization in the kingdom Animalia.

Pathology

There are a number of diseases and conditions affecting the gastrointestinal system, including:

Immune function

The gastrointestinal tract is also a prominent part of the immune system.[3] The low pH (ranging from 1 to 4) of the stomach is fatal for many microorganisms that enter it. Similarly, mucus (containing IgA antibodies) neutralizes many of these microorganisms. Other factors in the GI tract help with immune function as well, including enzymes in the saliva and bile. Enzymes such as Cyp3A4, along with the antiporter activities, are also instrumental in the intestine's role of detoxification of antigens and xenobiotics, such as drugs, involved in first pass metabolism. Health-enhancing intestinal bacteria serve to prevent the overgrowth of potentially harmful bacteria in the gut. Microorganisms are also kept at bay by an extensive immune system comprising the gut-associated lymphoid tissue (GALT).

Histology

General structure of the gut wall.

The gastrointestinal tract has a uniform general histology with some differences which reflect the specialization in functional anatomy.[4] The GI tract can be divided into 4 concentric layers:

Mucosa

The mucosa is the innermost layer of the gastrointestinal tract that is surrounding the lumen, or space within the tube. This layer comes in direct contact with the food (or bolus), and is responsible for absorption and secretion, important processes in digestion.

The mucosa can be divided into:

The mucosae are highly specialized in each organ of the gastrointestinal tract, facing a low pH in the stomach, absorbing a multitude of different substances in the small intestine, and also absorbing specific quantities of water in the large intestine. Reflecting the varying needs of these organs, the structure of the mucosa can consist of invaginations of secretory glands (e.g., gastric pits), or it can be folded in order to increase surface area (examples include villi and plicae circulares).

Submucosa

The submucosa consists of a dense irregular layer of connective tissue with large blood vessels, lymphatics and nerves branching into the mucosa and muscularis. It contains Meissner's plexus, an enteric nervous plexus, situated on the inner surface of the muscularis externa.

Muscularis externa

The muscularis externa consists of an inner circular layer and a longitudinal outer muscular layer. The circular muscle layer prevents the food from going backwards and the longitudinal layer shortens the tract. The coordinated contractions of these layers is called peristalsis and propels the bolus, or balled-up food, through the GI tract. Between the two muscle layers are the myenteric or Auerbach's plexus.

Adventitia

The adventitia consists of several layers of epithelia. When the adventitia is facing the mesentery or peritoneal fold, the adventitia is covered by a mesothelium supported by a thin connective tissue layer, together forming a serosa, or serous membrane.

Uses of animal gut by humans

See also

Notes

  1. Maton, Anthea; Jean Hopkins, Charles William McLaughlin, Susan Johnson, Maryanna Quon Warner, David LaHart, Jill D. Wright (1993). Human Biology and Health. Englewood Cliffs, New Jersey, USA: Prentice Hall. ISBN 0-13-981176-1. 
  2. Bruce M. Carlson (2004). Human Embryology and Developmental Biology (3rd edition ed.). Saint Louis: Mosby. ISBN 0-323-03649-X. 
  3. Richard Coico, Geoffrey Sunshine, Eli Benjamini (2003). Immunology: a short course. New York: Wiley-Liss. ISBN 0-471-22689-0. 
  4. Abraham L. Kierszenbaum (2002). Histology and cell biology: an introduction to pathology. St. Louis: Mosby. ISBN 0-323-01639-1. 
  5. "World's oldest condom". Ananova (2008). Retrieved on 2008-04-11.

References

External links