Mutation

Part of the Biology series on
Evolution
Tree of life.svg
Introduction
Mechanisms and processes

Adaptation
Genetic drift
Gene flow
Mutation
Natural selection
Speciation

Research and history

Evidence
Evolutionary history of life
History
Modern synthesis
Social effect
Theory and fact
Objections / Controversy

Evolutionary biology fields

Cladistics
Ecological genetics
Evolutionary development
Human evolution
Molecular evolution
Phylogenetics
Population genetics

Biology Portal ·
A mutation has caused this garden moss rose to produce flowers of different colors. This is a somatic mutation that may also be passed on in the germ line.

In biology, mutations are changes to the nucleotide sequence of the genetic material of an organism. Mutations can be caused by copying errors in the genetic material during cell division, by exposure to ultraviolet or ionizing radiation, chemical mutagens, or viruses, or can be induced by the organism, itself, by cellular processes such as hypermutation. In multicellular organisms with dedicated reproductive cells, mutations can be subdivided into germ line mutations, which can be passed on to descendants through the reproductive cells, and somatic mutations, which involve cells outside the dedicated reproductive group and which are not usually transmitted to descendants. If the organism can reproduce asexually through mechanisms such as cuttings or budding the distinction can become blurred. For example, plants can sometimes transmit somatic mutations to their descendants asexually or sexually where flower buds develop in somatically mutated parts of plants. A new mutation that was not inherited from either parent is called a de novo mutation. The source of the mutation is unrelated to the consequence, although the consequences are related to which cells are affected.

Mutations create variation within the gene pool. Less favorable (or deleterious) mutations can be reduced in frequency in the gene pool by natural selection, while more favorable (beneficial or advantageous) mutations may accumulate and result in adaptive evolutionary changes. For example, a butterfly may produce offspring with new mutations. The majority of these mutations will have no effect; but one might change the color of one of the butterfly's offspring, making it harder (or easier) for predators to see. If this color change is advantageous, the chance of this butterfly surviving and producing its own offspring are a little better, and over time the number of butterflies with this mutation may form a larger percentage of the population.

Neutral mutations are defined as mutations whose effects do not influence the fitness of an individual. These can accumulate over time due to genetic drift. It is believed that the overwhelming majority of mutations have no significant effect on an organism's fitness. Also, DNA repair mechanisms are able to mend most changes before they become permanent mutations, and many organisms have mechanisms for eliminating otherwise permanently mutated somatic cells.

Mutation is generally accepted by the scientific community as the mechanism upon which natural selection acts, providing the advantageous new traits that survive and multiply in offspring or disadvantageous traits that die out with weaker organisms.

Contents

Classification

By effect on structure

Illustrations of five types of chromosomal mutations.

The sequence of a gene can be altered in a number of ways. Gene mutations have varying effects on health depending on where they occur and whether they alter the function of essential proteins. Structurally, mutations can be classified as:

By effect on function

By inheritance

By pattern of inheritance

The human genome contains two copies of each gene – a paternal and a maternal allele.

By impact on protein sequence

Special classes

Causes of mutation

Two classes of mutations are spontaneous mutations (molecular decay) and induced mutations caused by mutagens.

Spontaneous mutations on the molecular level include:

Benzopyrene, the major mutagen in tobacco smoke, in an adduct to DNA. Produced from PDB 1JDG.

Induced mutations on the molecular level can be caused by:

DNA has so-called hotspots, where mutations occur up to 100 times more frequently than the normal mutation rate. A hotspot can be at an unusual base, e.g., 5-methylcytosine.

Mutation rates also vary across species. Evolutionary biologists have theorized that higher mutation rates are beneficial in some situations, because they allow organisms to evolve and therefore adapt more quickly to their environments. For example, repeated exposure of bacteria to antibiotics, and selection of resistant mutants, can result in the selection of bacteria that have a much higher mutation rate than the original population (mutator strains).

Nomenclature

Nomenclature of mutations specify the type of mutation and base or amino acid changes.

Harmful mutations

Changes in DNA caused by mutation can cause errors in protein sequence, creating partially or completely non-functional proteins. To function correctly, each cell depends on thousands of proteins to function in the right places at the right times. When a mutation alters a protein that plays a critical role in the body, a medical condition can result. A condition caused by mutations in one or more genes is called a genetic disorder. Some mutations alter a gene's DNA base sequence but do not change the function of the protein made by the gene. Studies in the fly Drosophila melanogaster suggest that if a mutation does change a protein, this will probably be harmful, with about 70 percent of these mutations having damaging effects, and the remainder being either neutral or weakly beneficial.[7]

If a mutation is present in a germ cell, it can give rise to offspring that carries the mutation in all of its cells. This is the case in hereditary diseases. On the other hand, a mutation can occur in a somatic cell of an organism. Such mutations will be present in all descendants of this cell, and certain mutations can cause the cell to become malignant, and thus cause cancer[8].

Often, gene mutations that could cause a genetic disorder are repaired by the DNA repair system of the cell. Each cell has a number of pathways through which enzymes recognize and repair mistakes in DNA. Because DNA can be damaged or mutated in many ways, the process of DNA repair is an important way in which the body protects itself from disease.

Beneficial mutations

Although many mutations are deleterious, mutations may have a positive effect given certain selective pressures in a population.

For example, a specific 32 base pair deletion in human CCR5 (CCR5-Δ32) confers HIV resistance to homozygotes and delays AIDS onset in heterozygotes.[9] The CCR5 mutation is more common in those of European descent. One theory for the etiology of the relatively high frequency of CCR5-Δ32 in the European population is that it conferred resistance to the bubonic plague in mid-14th century Europe. People who had this mutation were able to survive infection; thus, its frequency in the population increased.[10] It could also explain why this mutation is not found in Africa where the bubonic plague never reached. Newer theory says the selective pressure on the CCR5 Delta 32 mutation has been caused by smallpox instead of the bubonic plague.[11]

See also

  • Aneuploidy
  • Antioxidant
  • Budgerigar colour genetics
  • Homeobox
  • Macromutation
  • Muller's morphs
  • Mutant
  • Polyploidy
  • Robertsonian translocation
  • Signature tagged mutagenesis
  • Site-directed mutagenesis

References

  1. Freese, Ernst (1959). "The Difference between Spontaneous and Base-Analogue Induced Mutations of Phage T4". Proc of NAS 45 (4): 622–633. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=222607. 
  2. Freese, Ernst (1959). "The Specific Mutagenic Effect of Base Analogues on Phage T4". J. Mol. Biol. 1: 87–105. 
  3. Ellis NA, Ciocci S, German J (2001). "Back mutation can produce phenotype reversion in Bloom syndrome somatic cells". Hum Genet 108 (2): 167–73. doi:10.1007/s004390000447.  PMID 11281456
  4. Medterms.com
  5. Pfohl-Leszkowicz A, Manderville RA (January 2007). "Ochratoxin A: An overview on toxicity and carcinogenicity in animals and humans". Mol Nutr Food Res 51 (1): 61–99. doi:10.1002/mnfr.200600137. PMID 17195275. 
  6. Pilon L, Langelier Y, Royal A (August 1986). "Herpes simplex virus type 2 mutagenesis: characterization of mutants induced at the hprt locus of nonpermissive XC cells". Mol. Cell. Biol. 6 (8): 2977–83. PMID 3023954. PMC: 367868. http://mcb.asm.org/cgi/pmidlookup?view=long&pmid=3023954. 
  7. Sawyer SA, Parsch J, Zhang Z, Hartl DL (2007). "Prevalence of positive selection among nearly neutral amino acid replacements in Drosophila". Proc. Natl. Acad. Sci. U.S.A. 104 (16): 6504–10. doi:10.1073/pnas.0701572104. PMID 17409186. 
  8. Ionov Y, Peinado MA, Malkhosyan S, Shibata D, Perucho M (1993). "Ubiquitous somatic mutations in simple repeated sequences reveal a new mechanism for colonic carcinogenesis". Nature 363 (6429): 558–61. doi:10.1038/363558a0. PMID 8505985. 
  9. "CCR5 receptor gene and HIV infection, Antonio Pacheco.".
  10. "PBS:Secrets of the Dead. Case File: Mystery of the Black Death".
  11. Galvani A, Slatkin M (2003). "Evaluating plague and smallpox as historical selective pressures for the CCR5-Δ32 HIV-resistance allele". Proc Natl Acad Sci U S A 100 (25): 15276–9. doi:10.1073/pnas.2435085100. PMID 14645720. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=299980. 

Online books

External links