E-3 Sentry | |
---|---|
|
|
United States Air Force E-3 Sentry | |
Role | Airborne Warning and Control System (AWACS) |
Manufacturer | Boeing Integrated Defense Systems Northrop Grumman (radar) |
First flight | October 1975 |
Introduction | March 1977 |
Primary users | United States Air Force Royal Air Force Royal Saudi Air Force NATO |
Produced | 1977-1991 |
Number built | 68 |
Developed from | Boeing 707-320 |
The Boeing E-3 Sentry is an American military airborne warning and control system (AWACS) aircraft that provides all-weather surveillance, command, control and communications, to the United States, United Kingdom, France, Saudi Arabia, and NATO air defense forces. Production ended in 1992 after 68 had been built.[1][2]
Contents |
The E-3 Sentry is a modified Boeing 707-320B Advanced commercial airframe. Modifications included a rotating radar dome, single-point ground, and air refueling points. The dome is 30 feet (9.1 m) in diameter, six feet (1.8 m) thick at the center, and is held 14 feet (4.2 m) above the fuselage by two struts.[1] The dome weighs approximately 1.5 tons and provides 1.5 tons of lift. It contains a hydraulically rotated antenna system that permits the AN/APY-1/2 passive electronically scanned array radar system to provide surveillance from the Earth's surface up into the stratosphere, over land or water. Generators on each of the four engines provide the one megawatt of power required by the radar.[1] The Pulse Doppler radar has a range of more than 250 miles (400 km) for low-flying targets at its operating altitude (essentially to the radar horizon), and the Pulse(BTH) beyond the horizon radar has a range of approximately 400 miles (650 km) for aerospace vehicles flying at medium to high altitudes (essentially above the radar horizon). The radar combined with an SSR subsystem can look down to detect, identify and track enemy and friendly low-flying aircraft by eliminating ground clutter returns. [1][3][2]
The USAF E-3 fleet completed its largest upgrade in 2001. Known as the Block 30/35 Modification Program, the upgrade includes four enhancements:[4]
Since the Boeing 707 is no longer in production, the E-3 mission package has been fitted into the Boeing E-767 for the Japan Air Self Defence Force. The E-10 MC2A was intended to replace the United States operated E-3 (along with the RC-135 and the E-8 Joint STARS), but the E-10 program has been canceled. The USAF has now taken a new direction with the E-3 platform. It is investing and currently testing its block 40/45 modification. Currently, the USAF has one Block 40/45 E-3 that is under going flight testing, research and development. Another program that is currently in R&D is the Airframe Modernization Program (AMP). AMP would provide the E-3 with a glass cockpit and possibly re-engine the USAF fleet of E-3's with an engine that is more reliable and at least 20% more fuel efficient. New engines would give the USAF E-3's a longer range, longer time on station, shorter critical runway length (meaning the E-3 could now operate with a full fuel load on a runway with only 10,000 feet at higher temperatures and pressure altitude) and at a higher altitude that would provide better range for its line of sight sensors.
Other major subsystems in the E-3 are navigation, communications and computers (data processing). Consoles display computer-processed data in graphic and tabular format on video screens. Console operators perform surveillance, identification, weapons control, battle management and communications functions.[1]
The radar and computer subsystems on the E-3 Sentry can gather and present broad and detailed battlefield information. Data are collected as events occur. This includes position and tracking information on enemy aircraft and ships, and location and status of friendly aircraft and naval vessels. The information can be sent to major command and control centers in rear areas or aboard ships. In times of crisis, data can be forwarded to the National Command Authority in the United States.[1]
In support of air-to-ground operations, the Sentry can provide direct information needed for interdiction, reconnaissance, airlift and close-air support for friendly ground forces. It can also provide information for commanders of air operations to gain and maintain control of the air battle, whilst as an air defense asset, E-3s can detect, identify and track airborne enemy forces far from the boundaries of the United States or NATO countries and can direct fighter-interceptor aircraft to these enemy targets.[1]
The E-3 as equipped in USAF and NATO service can fly without refueling for 8 hours or 4000 miles, whilst newer examples in British, French and Saudi service, equipped with CFM56-2 engines can fly for 10 hours or 5000 miles without refuelling. Its range and on-station time can be increased through inflight refueling and the use of an on-board crew rest area. The range and loiter time can be used to alter the flight plan as required for operation reasons. [1][2]
Engineering, test and evaluation began on the first E-3 Sentry in October 1975. In March 1977 the 552nd Airborne Warning and Control Wing (now the 552d Air Control Wing at Tinker Air Force Base, Oklahoma received the first E-3 aircraft.[1]
The Radar System Improvement Program (RSIP) was a joint U.S./NATO development program.[1] RSIP enhances the operational capability of the E-3 radar electronic counter-measures, and dramatically improve the system's reliability, maintainability and availability.[1] This hardware and software modification to the E-3 improves radar set performance providing enhanced detection of targets, with an emphasis toward those with a low radar cross section (RCS).[1] Major advantages include: Increased range against reduced RCS targets to include cruise missiles; Improved electronic counter-counter measures (ECCM) against current threats; Improved radar system reliability and maintainability (R&M); and Improved radar control and maintenance panel (RCMP) with embedded test equipment.[1] RSIP utilizes a Pulse Doppler Pulse Compression (PDPC) waveform, increases data sampling rates, increases range and velocity resolution, increases signal integration time, adds new signal processing algorithms to enhance detection sensitivity and unambiguous range determination, and improves radar set monitoring and control. RSIP is a huge leap forward in a variety of factors. It increases the ability to detect and track smaller targets at greater distances, akin to giving the radar a set of binoculars. It also improves the reliability and maintainability for the radar hardware, which decreases the number of spares and amount of down time needed for repairs. Improved control and processing algorithms tailored to current threat data enhances system electronic counter-countermeasure (ECCM) capabilities. The improved electronic counter-counter measures mean it will be much more difficult for enemy forces to deceive or "jam" the AWACS with false electronic signals. The U.K. also has joined the U.S. in adding RSIP to upgrade their radar. Retrofit of the fleet was completed in December 2000. Along with the RSIP upgrade was installation of the Global Positioning System/Inertial Navigation Systems which dramatically improve positioning accuracy. In 2002, Boeing was awarded a contract to add RSIP to the French AWACS fleet. Installation was completed in 2006.[1][5]
In total, 68 aircraft were built, with 2 hull losses (one USAF aircraft, one NATO aircraft).[6][7]
The United States Air Force have a total of 33 E-3s in active service. 28 are stationed at Tinker AFB and belong to the Air Combat Command (ACC). Four are assigned to the Pacific Air Forces (PACAF) and stationed at Kadena AB, Okinawa and Elmendorf AFB, Alaska. One aircraft (TS-3) is assigned to the Boeing Aircraft Company for testing and development.[1]
NATO acquired 18 E-3As and support equipment for a NATO air defense force. Since all aircraft must be registered with a certain country, the decision was made to register the 18 NATO AWACS planes with Luxembourg, a NATO country that until that point had not had any air force. The first NATO E-3 was delivered in January 1982. Presently 17 NATO E-3As are in the inventory, since one NATO E-3 was lost in a crash.[7]
NATO members United Kingdom and France are not part of the NATO E-3A Component, instead procuring E-3 aircraft through a joint project. The UK and France operate their E-3 aircraft independently of each other and of NATO.[8] The UK operates seven aircraft and France operates four aircraft, all fitted with the newer CFM56-2 engines.[2] The British requirement came about following unsatisfactory tests with modified Hawker Siddeley Nimrod aircraft to replace the Avro Shackleton AEW platform in the early 1970s.[7]
The other operator of the type is Saudi Arabia which operates five aircraft, all fitted with CFM56-2 engines.[2] Japan has four Boeing E-767 aircraft equipped to similar standards.[1]
E-3 Sentry aircraft were among the first to deploy during Operation Desert Shield where they immediately established an around-the-clock radar screen to defend against Iraqi forces. During Operation Desert Storm, E-3s flew more than 400 missions and logged more than 5,000 hours of on-station time. The data collection capability of the E-3 radar and computer subsystems allowed an entire air war to be recorded for the first time in history. In addition to providing senior leadership with time-critical information on the actions of enemy forces, E-3 controllers assisted in 38 of the 40 air-to-air kills recorded during the conflict.[1]
In March 1996, the US Air Force activated the 513th Air Control Group (513 ACG), an ACC-gained Air Force Reserve Command (AFRC) AWACS unit under the Reserve Associate Program. Collocated with the 552 ACW at Tinker AFB, the 513 ACG which performs similar duties on active duty E-3 aircraft shared with the 552 ACW.[1]
General characteristics
Performance
General characteristics
Performance
Related development
Comparable aircraft
Related lists
|
|
|
|