Dmitri Ivanovich Mendeleev (sometimes spelled Mendeleyev or Mendeleef; Russian: Дми́трий Ива́нович Менделе́ев listen) (8 February [O.S. 27 January] 1834 – 2 February [O.S. 20 January] 1907), was a Russian chemist and inventor. He is credited as being the creator of the first version of the periodic table of elements. Using the table, he predicted the properties of elements yet to be discovered.
Contents |
Mendeleev was born on 8 February [O.S. 27 January] 1834 in Verhnie Aremzyani village, near Tobolsk (Russia) to Ivan Pavlovich Mendeleev and Maria Dmitrievna Mendeleeva (born Kornilieva). His grandfather was Pavel Maximovich Sokolov, a Russian priest. Ivan, along with his brothers and sisters, obtained new family names while attending theological seminary.[1]
Mendeleev was the youngest of 17 siblings, but the exact number differs among sources.[2] At the age of 13, after the passing of his father and the destruction of his mother's factory by fire, Mendeleev attended the Gymnasium in Tobolsk.
In 1849, the now poor Mendeleev family relocated to St. Petersburg, where he entered the Main Pedagogical Institute in 1850. After graduation, an illness that was diagnosed as tuberculosis caused him to move to the Crimean Peninsula on the northern coast of the Black Sea in 1855. While there he became a science master of the Simferopol gymnasium №1. He returned with fully restored health to St. Petersburg in 1857.
Between 1859 and 1861, he worked on the capillarity of liquids and the workings of the spectroscope in Heidelberg. In the late August of 1861 he wrote his first book on the spectroscope in which it received high acclaim. In 1862, he married Feozva Nikitichna Leshcheva. Mendeleev became Professor of Chemistry at the Saint Petersburg Technological Institute and the University of St. Petersburg in 1863. In 1865 he became Doctor of Science for his dissertation "On the Combinations of Water with Alcohol". He achieved tenure in 1867, and by 1871 had transformed St. Petersburg into an internationally recognized center for chemistry research. In 1876, he became obsessed with Anna Ivanova Popova and began courting her; in 1881 he proposed to her and threatened suicide if she refused. His divorce from Leshcheva was finalized one month after he had married Popova in early 1882. Even after the divorce, Mendeleev was technically a bigamist; the Russian Orthodox Church required at least 7 years before lawful re-marriage. His divorce and the surrounding controversy contributed to his failure to be admitted to the Russian Academy of Sciences (despite his international fame by that time). His daughter from his second marriage, Lyubov, became the wife of the famous Russian poet Alexander Blok. His other children were son Vladimir (a sailor, he took part in the notable Eastern journey of Nicholas II) and daughter Olga, from his first marriage to Feozva, and son Ivan and a pair of twins from Anna.
Though Mendeleev was widely honored by scientific organizations all over Europe, including the Copley Medal from the Royal Society of London, he resigned from St. Petersburg University on August 17, 1890.
In 1893, he was appointed Director of the Bureau of Weights and Measures. It was in this role that he was directed to formulate new state standards for the production of vodka. As a result of his work, in 1894 new standards for vodka were introduced into Russian law and all vodka had to be produced at 40% alcohol by volume.
Mendeleev also investigated the composition of oil fields, and helped to found the first oil refinery in Russia.
Mendeleev died in 1907 in St. Petersburg, Russia from influenza. The Mendeleev crater on the Moon, as well as element number 101, the radioactive mendelevium, are named after him.
After becoming a teacher, he wrote the definitive two-volume textbook at that time: Principles of Chemistry (1868-1870). As he attempted to classify the elements according to their chemical properties, he noticed patterns that led him to postulate his Periodic Table.
Unknown to Mendeleev, several other scientists had also been working on their own table of elements. One was John Newlands, who published his Law of Octaves in 1865. However, the lack of spaces for undiscovered elements and the placing of two elements in one box were criticised and his ideas were not accepted. Another was Lothar Meyer, who published a work in 1864, describing 28 elements. Like Newlands, Meyer did not seem to have the idea of using a table to predict new elements.
Mendeleev made for himself the following table:
Cl 35.5 | K 39 | Ca 40 |
Br 80 | Rb 85 | Sr 88 |
I 127 | Cs 133 | Ba 137 |
By adding additional elements following this pattern, he developed his version of the periodic table.
On March 6, 1869, Mendeleev made a formal presentation to the Russian Chemical Society, entitled The Dependence between the Properties of the Atomic Weights of the Elements, which described elements according to both weight and valence. This presentation stated that
Mendeleev published his periodic table of all known elements and predicted several new elements to complete the table. Only a few months after, Meyer published a virtually identical table. Some consider Meyer and Mendeleev the co-creators of the periodic table. But virtually everybody agrees that Mendeleev's accurate prediction of the qualities of what he called ekasilicon (germanium), ekaaluminium (gallium) and ekaboron (scandium) qualifies him for deserving the majority of the credit for studies.
Mendeleev questioned some of the accepted at that moment atomic weights (they could be measured only with a relatively low accuracy at that time), pointing out that they did not correspond to those suggested by his Periodic Law. He noted that tellurium has a higher atomic weight than iodine, but he placed them in the right order, incorrectly predicting that the accepted atomic weights at the time were at fault. He was puzzled about where to put the known lanthanides, and predicted the existence of another row to the table which were the actinides which were some of the heaviest in atomic mass.
Some people dismissed Mendeleev for predicting that there would be more elements, but he was proven to be correct when Ga (Gallium) and Ge (Germanium) were found in 1875 and 1886 respectively, fitting perfectly into the two missing spaces. [3]
Mendeleev made other important contributions to chemistry. The Russian chemist and science historian L.A. Tchugayev has characterized him as "a chemist of genius, first-class physicist, a fruitful researcher in the fields of hydrodynamics, meteorology, geology, certain branches of chemical technology (explosives, petroleum, and fuels, for example) and other disciplines adjacent to chemistry and physics, a thorough expert of chemical industry and industry in general, and an original thinker in the field of economy." Mendeleev was one of the founders, in 1869, of the Russian Chemical Society. He worked on the theory and practice of protectionist trade and on agriculture.
In an attempt at a chemical conception of the Aether, he put forward a hypothesis that there existed two inert chemical elements of lesser atomic weight than hydrogen. Of these two proposed elements, he thought the lighter to be an all-penetrating, all-pervasive gas, and the slightly heavier one to be a proposed element, coronium.
Mendeleev devoted much study and made important contributions to the determination of the nature of such indefinite compounds as solutions.
In another department of physical chemistry, he investigated the expansion of liquids with heat, and devised a formula similar to Gay-Lussac's law of the uniformity of the expansion of gases, while as far back as 1861 he anticipated Thomas Andrews' conception of the critical temperature of gases by defining the absolute boiling-point of a substance as the temperature at which cohesion and heat of vaporization become equal to zero and the liquid changes to vapor, irrespective of the pressure and volume.
Mendeleev is given credit for the introduction of the metric system to the Russian Empire.
He invented pyrocollodion, a kind of smokeless powder based on nitrocellulose. This work had been commissioned by the Russian Navy, which however did not adopt its use. In 1892 Mendeleev organized its manufacture.
Mendeleev studied petroleum origin and concluded that hydrocarbons are abiogenic and form deep within the earth. He wrote: "The capital fact to note is that petroleum was born in the depths of the earth, and it is only there that we must seek its origin." (Dmitri Mendeleev, 1877)[4]
The classic Russian and Polish vodka is 40% ABV (USA 80 proof). This can be attributed to the Russian standards for vodka production introduced in 1894 by Alexander III from research undertaken by the Russian chemist Dmitri Mendeleev. According to the Vodka Museum in Moscow, Mendeleev found the perfect percentage to be 38. However, since spirits in his time were taxed on their strength, the percentage was rounded up to 40 to simplify the tax computation.