Friedmann equations

Physical cosmology
WMAP 2008.png
Universe · Big Bang
Age of the Universe
Timeline of the Big Bang
Ultimate fate of the universe
Alexander Friedman

The Friedmann equations are a set of equations in cosmology that govern the expansion of space in homogeneous and isotropic models of the universe within the context of general relativity. They were first derived by Alexander Friedmann in 1922[1] from Einstein's field equations of gravitation for the Friedmann-Lemaître-Robertson-Walker metric and a fluid with a given mass density ρ and pressure p. The equations for negative spatial curvature were given by Friedmann in 1924.[2]

Contents

Assumptions

Main article: Friedmann-Lemaître-Robertson-Walker metric

The Friedmann equations start with the simplifying assumption that the universe is spatially homogeneous and isotropic; empirically, this is justified on scales larger than 100 Mpc. This assumption implies that the metric of the universe must be of the form:

 ds^2 = {a(t)}^2 ds_3^2 - dt^2

where ds_3^2 is a three dimensional metric that must be one of (a) flat space (b) a sphere of constant positive curvature or (c) a hyperbolic space with constant negative curvature. The parameter  k discussed below takes the value  0, 1, -1 in these three cases respectively. It is this fact that allows us to sensibly speak of a "scale factor",  a(t) .

Einstein's equations now relate the evolution of this scale factor to the pressure and energy of the matter in the universe. The resulting equations are described below.

The equations

There are two independent Friedmann equations for modeling a homogeneous, isotropic universe. They are:

H^2 = \left(\frac{\dot{a}}{a}\right)^2 = \frac{8 \pi G}{3} \rho - \frac{kc^2}{a^2} + \frac{\Lambda c^2}{3}

which is derived from the 00 component of Einstein's field equations, and

\dot{H} + H^2 = \frac{\ddot{a}}{a} =  -\frac{4 \pi G}{3}\left(\rho+\frac{3p}{c^2}\right) + \frac{\Lambda c^2}{3}

which is derived from the trace of Einstein's field equations. G, Λ, and c are universal constants. k is constant throughout a particular solution, but may vary from one solution to another. a, H, ρ, and p are functions of time. Where H \equiv \frac{\dot{a}}{a}, the Hubble parameter, is the rate of expansion of the universe. \Lambda is the cosmological constant. G is Newton's gravitational constant. c is the speed of light in vacuum. k \over a^2 is the spatial curvature in any time-slice of the universe; it is equal to one-sixth of the spatial Ricci curvature scalar R since R = \frac{6}{a^2}(\ddot{a} a + \dot{a}^2 + kc^2) in the Friedman model. There are two commonly used choices for a and k which describe the same physics:

Using the first equation, the second equation can be re-expressed as

\dot{\rho} = -3 H \left(\rho + \frac{p}{c^2}\right),

which eliminates \Lambda \! and expresses the conservation of mass-energy.

These equations are sometimes simplified by redefining

\rho \rightarrow \rho + \frac{\Lambda c^2}{8 \pi G}

p \rightarrow p - \frac{\Lambda c^4}{8 \pi G}

to give:

H^2 = \left(\frac{\dot{a}}{a}\right)^2 = \frac{8 \pi G}{3}\rho - \frac{kc^2}{a^2}
\dot{H} + H^2 = \frac{\ddot{a}}{a} = - \frac{4\pi G}{3}\left(\rho + \frac{3p}{c^2}\right).

And the simplified form of the second equation is invariant under this transformation.

The Hubble parameter can change over time if other parts of the equation are time dependent (in particular the mass density, the vacuum energy, or the spatial curvature). Evaluating the Hubble parameter at the present time yields Hubble's constant which is the proportionality constant of Hubble's law. Applied to a fluid with a given equation of state, the Friedmann equations yield the time evolution and geometry of the universe as a function of the fluid density.

Some cosmologists call the second of these two equations the Friedmann acceleration equation and reserve the term Friedmann equation for only the first equation.

The density parameter

The density parameter, \Omega, is defined as the ratio of the actual (or observed) density \rho to the critical density \rho_c of the Friedmann universe. An expression for the critical density is found by assuming Λ to be zero (as it is for all basic Friedmann universes) and setting the normalised spatial curvature, k, equal to zero. When the substitutions are applied to the first of the Friedmann equations we find:

\rho_c = \frac{3 H^2}{8 \pi G}.

The density parameter (useful for comparing different cosmological models) is then defined as:

\Omega \equiv \frac{\rho}{\rho_c} = \frac{8 \pi G\rho}{3 H^2}.

This term originally was used as a means to determine the spatial geometry of the universe, where \rho_c is the critical density for which the spatial geometry is flat (or Euclidian). Assuming a zero vacuum energy density, if \Omega is larger than unity, the space sections of the universe are closed; the universe will eventually stop expanding, then collapse. If \Omega is less than unity, they are open; and the universe expands forever. However, one can also subsume the spatial curvature and vacuum energy terms into a more general expression for \Omega in which case this density parameter equals exactly unity. Then it is a matter of measuring the different components, usually designated by subscripts. According to the ΛCDM model, there are important components of \Omega due to baryons, cold dark matter and dark energy. The spatial geometry of the universe has been measured by the WMAP satellite to be nearly flat, meaning that the spatial curvature parameter k is zero.

The first Friedmann equation is often seen in a form with density parameters.

\frac{H^2}{H_0^2} = \Omega_R a^{-4} + \Omega_M a^{-3} + \Omega_k a^{-2} + \Omega_{\Lambda}.

Here \Omega_R is the radiation density today (i.e. when a=1), \Omega_M is the matter (dark plus baryonic) density today, \Omega_k = 1 - \Omega is the "spatial curvature density" today, and \Omega_\Lambda is the cosmological constant or vacuum density today.

Useful solutions

The Friedmann equations can be easily solved in presence of a perfect fluid with equation of state (ideal gas law)

p=w\rho c^2,\!

where p is the pressure, \rho is the mass density of the fluid in the comoving frame and w is some constant. The solution for the scale factor is

 a(t)=a_0\,t^{\frac{2}{3(w+1)}}

where a_0 is some integration constant to be fixed by the choice of initial conditions. This family of solutions labelled by w is extremely important for cosmology. E.g. w=0 describes a matter-dominated universe, where the pressure is negligible with respect to the mass density. From the generic solution one easily sees that in a matter-dominated universe the scale factor goes as

a(t)\propto t^{2/3} matter-dominated

Another important example is the case of a radiation-dominated universe, i.e., when w=1/3. This leads to

a(t)\propto t^{1/2} radiation dominated

Rescaled Friedmann equation

Set a=ãa0, ρc=3H02/8πG, ρ=ρcΩ, t=\tilde{t}/H_0, Ωc=-kc2/H02a02 where a0 and H0 are separately the scale factor and the Hubble parameter today. Then we can have

\frac{1}{2}\left( \frac{d\tilde{a}}{d\tilde{t}}\right)^2 + U_{\rm eff}(\tilde{a})=\frac{1}{2}\Omega_c

where Ueff(ã)=Ωã2/2. For any form of the effective potential Ueff(ã), there is an equation of state p=p(ρ) that will produce it.

See also

References

  1. Friedman, A (1922). "Über die Krümmung des Raumes". Z. Phys. 10: 377–386. doi:10.1007/BF01332580.  (German) (English translation in: Friedman, A (1999). "On the Curvature of Space". General Relativity and Gravitation 31: 1991–2000. doi:10.1023/A:1026751225741. http://adsabs.harvard.edu/abs/1999GReGr..31.1991F. )
  2. Friedmann, A (1924). "Über die Möglichkeit einer Welt mit konstanter negativer Krümmung des Raumes". Z. Phys. 21: 326–332. doi:10.1007/BF01328280.  (German) (English translation in: Friedmann, A (1999). "On the Possibility of a World with Constant Negative Curvature of Space". General Relativity and Gravitation 31: 2001–2008. doi:10.1023/A:1026755309811. http://adsabs.harvard.edu/abs/1999GReGr..31.2001F. )
  3. Ray A d'Inverno, Introducing Einstein's Relativity, ISBN 0198596863.