Compass

A simple dry magnetic pocket compass

A compass, magnetic compass or mariner's compass is a navigational instrument for determining direction relative to the earth's magnetic poles. It consists of a magnetized pointer (usually marked on the North end) free to align itself with Earth's magnetic field. The face of the compass generally highlights the cardinal points of north, south, east and west. The compass greatly improved the safety and efficiency of travel, especially ocean travel. A compass can be used to calculate heading, used with a sextant to calculate latitude, and with a marine chronometer to calculate longitude. It thus provides a much improved navigational capability that has only been partially supplanted by modern devices such as the gyrocompass and the Global Positioning System (GPS).[1]

A compass is any magnetically sensitive device able to indicate the direction of the magnetic north of a planet's magnetosphere. Often compasses are built as a stand alone sealed instrument with a magnetized bar or needle turning freely upon a pivot, or moving in a fluid, thus able to point in a northerly and southerly direction. An early compass was invented in ancient China before 1044. The dry compass was invented in medieval Europe around 1300.[2] This was supplanted in the early 20th century by the liquid-filled magnetic compass.[3]

Other, more accurate, devices have been invented for determining north that do not depend on the Earth's magnetic field for operation (known in such cases as true north, as opposed to magnetic north). A gyrocompass or astrocompass can be used to find true north, while being unaffected by stray magnetic fields, nearby electrical power circuits or nearby masses of ferrous metals. A recent development is the electronic compass, which detects the magnetic directions without potentially fallible moving parts. This device frequently appears as an optional subsystem built into GPS receivers.

Contents

History of the compass

Navigation prior to the compass

Prior to the introduction of the compass, position and direction at sea was primarily determined by the sighting of landmarks, supplemented with the observation of the position of celestial bodies. Ancient mariners often kept within sight of land. The invention of the compass enabled the determination of heading when the sky was overcast or foggy. And, when the sun or other known celestial bodies could be observed, it enabled the calculation of latitude. This enabled mariners to navigate safely far from land, contributing to the Age of Discovery.

Olmec artifact

Based on his find of an Olmec hematite artifact in Mesoamerica, radiocarbon dated to 1400-1000 BC, astronomer John Carlson suggested that "the Olmec may have discovered and used the geomagnetic lodestone compass earlier than 1000 BC". If true, this "predates the Chinese discovery of the geomagnetic lodestone compass by more than a millennium".[4] Carlson speculates that the Olmecs used similar artifacts as a directional device for astrological or geomantic purposes. The artifact is part of a polished lodestone bar with a groove at one end (possibly for sighting). The artifact now consistently points 35.5 degrees west of north, but may have pointed north-south when whole.[5] No similar hematite artifacts have been found.

China

Model of a Han Dynasty (206 BCE – 220 CE) south-indicating ladle or sinan. (Historical existence is disputed.)[6]

There is disagreement as to when the compass was invented. These are noteworthy Chinese literary references in evidence for its antiquity:

Thus, the use of a magnetic compass as a direction finder occurred sometime before 1044, but evidence for the use of the compass as a navigational device did not appear until 1119.

The typical Chinese navigational compass was in the form of a magnetic needle floating in a bowl of water.[12] According to Needham, the Chinese in the Song Dynasty and continuing Yuan Dynasty did make use of a dry compass, although this type never became as widely used in China as the wet compass.[13] Evidence of this is found in the Shilin guangji ("Guide Through the Forest of Affairs"), published in 1325 by Chen Yuanjing, although its compilation had taken place between 1100 and 1250.[13] The dry compass in China was a dry suspension compass, a wooden frame crafted in the shape of a turtle hung upside down by a board, with the lodestone sealed in by wax, and if rotated, the needle at the tail would always point in the northern cardinal direction.[13] Although the European compass-card in box frame and dry pivot needle was adopted in China after its use was taken by Japanese pirates in the 16th century (who had in turn learned of it from Europeans),[14] the Chinese design of the suspended dry compass persisted in use well into the 18th century.[15]

However, according to Kreutz there is only a single Chinese reference to a dry-mounted needle (built into a pivoted wooden tortoise) which is dated to between 1150 and 1250, but there is no indication that Chinese mariners ever used anything but the floating needle in a bowl until the 16th-century European contacts.[16] Additionally, it must be pointed out that, unlike Needham, other experts on the history of the compass make no mention of an indigenous dry compass in China and reserve the term for the European form which became later worldwide standard.[17][18][19]

Diagram of a Ming Dynasty mariner's compass

The first recorded use of a 48 position mariner's compass on sea navigation was noted in a book titled “The Customs of Cambodia” by Yuan dynasty diplomat Zhou Daguan, he described his 1296 voyage from Wenzhou to Angkor Thom in detail; when his ship set sailed from Wenzhou, the mariner took a needle direction of “ding wei” position, which is equivalent to 22.5 degree SW. After they arrived at Baria, the mariner took "Kun Shen needle" , or 52.5 degree SW.[20] Zheng He's Navigation Map, also known as "The Mao Kun Map", contains a large amount of detail "needle records" of Zheng He's travel.[21]

Zheng He's Navigation Map, also known as "The Mao Kun Map", contains a large amount of detail "needle records" of Zheng He's travel.[22]

Question of diffusion

There is debate on what happened to the compass after its first appearance with the Chinese. Theories include:

The latter two are supported by evidence of the earlier mentioning of the compass in European works rather than Arabic. The first European mention of a magnetized needle and its use among sailors occurs in Alexander Neckam's De naturis rerum (On the Natures of Things), probably written in Paris in 1190.[23] Other evidence for this includes the Arabic word for "Compass" (al-konbas), possibly being a derivation of the old Italian word for compass.

In the Arab world, the earliest reference comes in The Book of the Merchants' Treasure, written by one Baylak al-Kibjaki in Cairo about 1282.[24] Since the author describes having witnessed the use of a compass on a ship trip some forty years earlier, some scholars are inclined to antedate its first appearance accordingly. There is also a slightly earlier non-Mediterranean Muslim reference to an iron fish-like compass in a Persian talebook from 1232.[25]

Question of independent European invention

Navigational sailor's compass rose.

There have been various arguments put forward concerning whether or not the European compass was an independent invention.

Arguments for independent invention:[26]

Arguments against independent invention:

Medieval Europe

Pivoting compass needle in a 14th century copy of Epistola de magnete of Peter Peregrinus (1269)

In the Mediterranean, the introduction of the compass, at first only known as a magnetized pointer floating in a bowl of water[27], went hand in hand with improvements in dead reckoning methods, and the development of Portolan charts, leading to more navigation during winter months in the second half of the 13th century.[28] While the practice from ancient times had been to curtail sea travel between October and April, due in part to the lack of dependable clear skies during the Mediterranean winter, the prolongation of the sailing season resulted in a gradual, but sustained increase in shipping movement: By around 1290 the sailing season could start in late January or February, and end in December.[29] The additional few months were of considerable economic importance. For instance, it enabled Venetian convoys to make two round trips a year to the Levant, instead of one.[30]

At the same time, traffic between the Mediterranean and northern Europe also increased, with first evidence of direct commercial voyages from the Mediterranean into the English Channel coming in the closing decades of the 13th century, and one factor may be that the compass made traversal of the Bay of Biscay safer and easier.[31] Although critics like Kreutz feels that it was later in 1410 that anyone really started steering by compass.[32]

Islamic world

The earliest reference to an iron fish-like compass in the Islamic world occurs in a Persian talebook from 1232.[25] The earliest Arabic reference to a compass - in the form of magnetic needle in a bowl of water - comes from the Yemeni sultan and astronomer Al-Ashraf in 1282.[24] He also appears to be the first to make use of the compass for astronomical purposes.[33] Since the author describes having witnessed the use of a compass on a ship trip some forty years earlier, some scholars are inclined to antedate its first appearance in the Arab world accordingly.[25]

In 1300, another Arabic treatise written by the Egyptian astronomer and muezzin Ibn Simʿūn describes a dry compass for use as a "Qibla indicator" to find the direction to Mecca. Like Peregrinus' compass, however, Ibn Simʿūn's compass did not feature a compass card.[34] In the 14th century, the Syrian astronomer and timekeeper Ibn al-Shatir (1304-1375) invented the compass dial, a timekeeping device incorporating both a universal sundial and a magnetic compass. He invented it for the purpose of finding the direction to Mecca and the times of Salah prayers at the Umayyad Mosque.[35] Arab navigators also introduced the 32-point compass rose during this time.[36]

Dry compass

Early modern dry compass suspended by a gimbal (1570)

The familiar dry compass (commonly called a mariner's compass) was invented in Europe around 1300. The dry mariner's compass consists of three elements: A freely pivoting needle on a pin enclosed in a little box with a glass cover and a wind rose, whereby "the wind rose or compass card is attached to a magnetized needle in such a manner that when placed on a pivot in a box fastened in line with the keel of the ship the card would turn as the ship changed direction, indicating always what course the ship was on".[37] Later, compasses were often fitted into a gimbal mounting to reduce grounding of the needle or card when used on the pitching and rolling deck of a ship.

While pivoting needles in glass boxes had already been described by the French scholar Peter Peregrinus in 1269,[38] and by the Egyptian scholar Ibn Simʿūn in 1300,[34] there is an inclination to honour tradition and credit Flavio Gioja (fl. 1302), an Italian marine pilot from Amalfi, with perfecting the sailor's compass by suspending its needle over a compass card, giving thus the compass its familiar appearance.[39] Such a compass with the needle attached to a rotating card is also described in a commentary on Dante's Divine Comedy from 1380, while an earlier source refers to a portable compass in a box (1318),[40] supporting the notion that the dry compass was known in Europe by then.[41]

Bearing compass

Bearing compass (18th century).

A bearing compass is a magnetic compass mounted in such a way that it allows the taking of bearings of objects by aligning them with the lubber line of the bearing compass.[42] A surveyor's compass is a specialized compasses made to accurately measure heading of landmarks and measure horizontal angles to help with map making. These were already in common use by the early 18th century and are described in the 1728 Cyclopaedia. The bearing compass was steadily reduced in size and weight to increase portability, resulting in a model that could be carried and operated in one hand. In 1885, a patent was granted for a hand compass fitted with a viewing prism and lens that enabled the user to accurately sight the heading of geographical landmarks, thus creating the prismatic compass.[43] Another sighting method was by means of a reflective mirror. First patented in 1902, the Bézard compass consisted of a field compass with a mirror mounted above it.[44][45] This arrangement enabled the user to align the compass with an objective while simultaneously viewing its bearing in the mirror.[46][47]

In 1928, Gunnar Tillander, a Swedish unemployed instrument maker and avid participant in the sport of orienteering, invented a new style of bearing compass. Dissatisfied with existing field compasses, which required a separate protractor in order to take bearings from a map, Tillander decided to incorporate both instruments into a single instrument. His design featured a metal compass capsule containing a magnetic needle with orienting marks in its base, fitted into a baseplate marked with a lubber line (later called a direction of travel indicator). By rotating the capsule to align the needle with the orienting marks, the course bearing could be read at the lubber line. Moreover, by aligning the baseplate with a course drawn on a map - ignoring the needle - the compass could also function as a protractor. Tillander took his design to fellow orienteers Björn and Alvar Kjellström, who were selling basic compasses, and the three modified Tillander's design. In December 1932, the Silva Company was formed, and the three men began manufacturing and selling their Silva compass to Swedish orienteers, outdoorsmen, and army officers.[48][49][50]

Liquid compass

The liquid compass is a design in which the magnetized needle or card is damped by fluid to protect against excessive swing or wobble, improving readability while reducing wear. A rudimentary working model of a liquid compass was introduced by Sir Edmund Halley at a meeting of the Royal Society in 1690.[51] However, as early liquid compasses were fairly cumbersome and heavy, and subject to damage, their main advantage was aboard ship. Protected in a binnacle and normally gimbal-mounted, the liquid inside the compass housing effectively damped shock and vibration, while eliminating excessive swing and grounding of the card caused by the pitch and roll of the vessel. The first liquid mariner's compass believed practicable for limited use was patented by the Englishman Francis Crow in 1813.[52][53] Liquid-damped marine compasses for ships and small boats were occasionally used by the British Royal Navy from the 1830s through 1860, but the standard Admiralty compass remained a dry-mount type.[54] In the latter year, the American physicist and inventor Edward Samuel Ritchie patented a greatly improved liquid marine compass that was adopted in revised form for general use by the U.S. Navy, and later purchased by the Royal Navy as well.[55]

Despite these advances, the liquid compass was not introduced generally into the Royal Navy until 1908. An early version developed by RN Captain Creak proved to be operational under heavy gunfire and seas, but was felt to lack navigational precision compared with the design by Lord Kelvin:

Captain Creak's first step in the development of the liquid compass was to introduce a "card mounted on a float, with two thin and relatively short needles, fitted with their poles at the scientifically correct angular distances, and with the centre of gravity, centre of buoyancy, and the point of suspension in correct relation to each other...The compass thus designed rectified the defects of the Admiralty Standard Compass...with the additional advantage of considerable steadiness under heavy gunfire and in a seaway... The one defect in the compass as developed by Creak up to 1892 was that "for manoeuvring purposes it was inferior to Lord Kelvin's compass, owing to comparative sluggishness on a large alteration of course through the drag on the card by the liquid in which it floated...[3][56]

However, with ship and gun sizes continuously increasing, the advantages of the liquid compass over the Kelvin compass became unavoidably apparent to the Admiralty, and after widespread adoption by other navies, the liquid compass was generally adopted by the Royal Navy as well.[3]

Liquid compasses were next adapted for aircraft. In 1909, Captain F.O. Creagh-Osborne, Superintendent of Compasses at the British Admiralty, introduced his Creagh-Osborne aircraft compass, which used a mixture of alcohol and distilled water to damp the compass card.[57][58] After the success of this invention, Capt. Creagh-Osborne adapted his design to a much smaller pocket model[59] for individual use[60] by officers of artillery or infantry, receiving a patent in 1915.[61]

In 1933 Tuomas Vohlonen, a surveyor by profession, applied for a patent for a unique method of filling and sealing a lightweight celluloid compass housing or capsule with a petroleum distillate to dampen the needle and protect it from shock and wear due to excessive motion.[62] Introduced in a wrist-mount model in 1936 as the Suunto Oy Model M-311, the new capsule design led directly to the lightweight liquid field compasses of today.[63]

History of non-navigational uses

Building orientation

Evidence for the orientation of buildings by the means of a magnetic compass can be found in 12th century Denmark: one fourth of its 570 Romanesque churches are rotated by 5-15 degrees clockwise from true east-west, thus corresponding to the predominant magnetic declination of the time of their construction.[64] Most of these churches were built in the 12th century, indicating a fairly common usage of magnetic compasses in Europe by then.[65]

Mining

The use of a compass as a direction finder underground was pioneered by the Tuscan mining town Massa where floating magnetic needles were employed for determining tunneling and defining the claims of the various mining companies as early as the 13th century.[66] In the second half of the 15th century, the compass belonged to the standard equipment of Tyrolian miners, and shortly afterwards a first detailed treatise dealing with the underground use of compasses was published by the German miner Rülein von Calw (1463-1525).[67]

Astronomy

Three astronomical compasses meant for establishing the meridian were described by Peter Peregrinus in 1269 (referring to experiments made before 1248)[68] In 1300, an Arabic treatise written by the Egyptian astronomer and muezzin Ibn Simʿūn describes a dry compass for use as a "Qibla indicator" to find the direction to Mecca. Ibn Simʿūn's compass, however, did not feature a compass card nor the familiar glass box.[34] In the 14th century, the Syrian astronomer and timekeeper Ibn al-Shatir (1304-1375) invented a compass dial, a timekeeping device incorporating both a universal sundial and a magnetic compass. He invented it for the purpose of finding the direction to Mecca and the times of Salah prayers at the Umayyad Mosque.[35] Arab navigators also introduced the 32-point compass rose during this time.[36]

Modern compasses

Liquid filled lensatic compass

Modern compasses usually use a magnetized needle or dial inside a capsule completely filled with fluid (oil, kerosene, or alcohol is common). While older designs commonly incorporated a flexible diaphragm or airspace inside the capsule to allow for volume changes caused by temperature or altitude, modern liquid compasses utilize smaller housings and/or flexible materials for the capsule itself to accomplish the same result. The fluid dampens the movement of the needle and causes the needle to stabilize quickly rather than oscillate back and forth around magnetic north. North on the needle or dial, as well as other key points are often marked with phosphorescent, photoluminescent, or self-luminous materials[69] to enable the compass to be read at night or in poor light.

Many modern recreational and military compasses integrate a protractor with the compass, using a separate magnetized needle. In this design the rotating capsule containing the needle has a transparent base containing map orienting lines as well as an orienting 'box' or outline for the needle.[70] The capsule is then mounted in a transparent baseplate containing a direction-of-travel (DOT) indicator for use in taking bearings directly from a map.[70]

Other features found on some modern compasses are map and romer scales for measuring distances and plotting positions on maps, luminous markings on the face or bezels, various sighting mechanisms (mirror, prism, etc.) for taking bearings of distant objects with greater precision, "global" needles for use in differing hemispheres, adjustable declination for obtaining instant true bearings without resort to arithmetic, and devices such as inclinometers for measuring gradients.[70]

The military forces of a few nations, notably the United States Army, continue to utilize lensatic field compasses with magnetized compass dials or cards instead of needles. A lensatic card compass permits reading the bearing off of the compass card with only a slight downward glance from the sights (see photo), but may require a separate protractor for use with a map.[70][71] The official U.S. military lensatic compass does not use fluid to damp needle swing, but rather electromagnetic induction to damp the needle. A "deep-well" design is used to allow the compass to be used globally with little or no effect in accuracy caused by a tilting compass dial. As induction forces provide less damping than fluid-filled designs, a needle lock is fitted to the compass to reduce wear, operated by the folding action of the rear sight/lens holder. The use of air-filled induction compasses has declined over the years, as they may become inoperative or inaccurate in freezing temperatures or humid environments.[72]

Some military compasses, like the U.S. SY-183 ('SandY-183') military lensatic compass, the Silva 4b Militaire, and the Suunto M-5N(T) contain the radioactive material tritium (3H) and a combination of phosphors.[73] The U.S. military compass, made by Stocker & Yale (later, Cammenga) contained 120mCi (millicuries) of tritium. The purpose of the tritium and phosphors is to provide illumination for the compass. This illumination is a form of fluorescence, not requiring the compass to be "recharged" by sunlight or artificial light.[74].

Mariner's compasses can have two or more magnetic needles permanently attached to a compass card. These move freely on a pivot. A lubber line, which can be a marking on the compass bowl or a small fixed needle indicates the ship's heading on the compass card. Traditionally the card is divided into thirty-two points (known as rhumbs), although modern compasses are marked in degrees rather than cardinal points. The glass-covered box (or bowl) contains a suspended gimbal within a binnacle. This preserves the horizontal position.

Gyrocompass

Main article: Gyrocompass

A gyrocompass is similar to a gyroscope. It is a compass that finds true north by using an (electrically powered) fast-spinning wheel and friction forces in order to exploit the rotation of the Earth. Gyrocompasses are widely used on ships. They have two main advantages over magnetic compasses:

Large ships typically rely on a gyrocompass, using the magnetic compass only as a backup. Increasingly, electronic fluxgate compasses are used on smaller vessels. However compasses are still widely in use as they can be small, use simple reliable technology, are comparatively cheap, often easier to use than GPS, require no energy supply, and unlike GPS, are not affected by objects, e.g. trees, that can block the reception of electronic signals.

Solid state compasses

Small compasses found in clocks, phones, e.g., the Nokia, and other electronic items are solid-state devices, usually built out of two or three magnetic field sensors that provide data for a microprocessor. Using trigonometry the correct heading relative to the compass is calculated.

Often, the device is a discrete component which outputs either a digital or analog signal proportional to its orientation. This signal is interpreted by a controller or microprocessor and used either internally, or sent to a display unit. An example implementation, including parts list and circuit schematics, shows one design of such electronics. The sensor uses highly calibrated internal electronics to measure the response of the device to the Earth's magnetic field.

Specialty compasses

A range of specialty compasses would include a Qibla compass, which is used by Muslims to show the direction to Mecca for prayers. Similarly, a Jerusalem compass [75] is used by Jews to point the direction of Jerusalem for prayers.

Other specialty compasses include the optical or prismatic hand bearing compass, often used by surveyors, cave explorers, foresters, geologists, or mariners. This type ordinarily uses a liquid-damped capsule[76] and magnetized floating compass dial with an integral optical (direct or lensatic) or prismatic sight, often fitted with built-in photoluminescent or battery-powered illumination.[70] Using the optical or prism sight, such compasses can be read with extreme accuracy when taking bearings to an object, often to fractions of a degree. Most of these compasses are designed for heavy-duty use, with high-quality needles and jeweled bearings, and many are fitted for tripod mounting for additional accuracy.[70]

Construction of a compass

Magnetic needle

A magnetic rod is required when constructing a compass. This can be created by aligning an iron or steel rod with Earth's magnetic field and then tempering or striking it. However, this method produces only a weak magnet so other methods are preferred. For example, a magnetised rod can be created by repeatedly rubbing an iron rod with a magnetic lodestone. This magnetised rod (or magnetic needle) is then placed on a low friction surface to allow it to freely pivot to align itself with the magnetic field. It is then labeled so the user can distinguish the north-pointing from the south-pointing end; in modern convention the north end is typically marked in some way, often by being painted red.

Needle-and-bowl device

If a needle is rubbed on a lodestone or other magnet, the needle becomes magnetized. When it is inserted in a cork or piece of wood, and placed in a bowl of water it becomes a compass. Such devices were universally used as compass until the invention of the box-like compass with a 'dry' pivoting needle sometime around 1300.

Points of the compass

Main article: Boxing the compass

Originally, many compasses were marked only as to the direction of magnetic north, or to the four cardinal points (north, south, east, west). Later, these were divided, in China into 24, and in Europe into 32 equally spaced points around the compass card. For a table of the thirty-two points, see compass points.

In the modern era, the 360-degree system took hold. This system is still in use today for civilian navigators. The degree dial spaces the compass markings with 360 equidistant points. Some nations have adopted the "grad" system instead, which spaces the dial into 400 grads or points.

Most military defense forces have adopted the "mil" system, in which the compass dial is spaced into 6400 units (some nations use 6000) or "mils" for additional precision when measuring angles, laying artillery, etc. The value to the military is that one mil subtends approximately one metre at a distance of one kilometer. Former Warsaw Pact countries (Soviet Union, GDR etc.) used a 60° graduation (i.e., the unit is 100 Russian angular mils), often counterclockwise (see picture of wrist compass). This is still in use in Russia.

Compass balancing

Because the Earth's magnetic field's inclination and intensity vary at different latitudes, compasses are often balanced during manufacture. Most manufacturers balance their compass needles for one of five zones, ranging from zone 1, covering most of the Northern Hemisphere, to zone 5 covering Australia and the southern oceans. This balancing prevents excessive dipping of one end of the needle which can cause the compass card to stick and give false readings.

Compass correction

Main article: Magnetic deviation
A binnacle containing a ship's steering compass, with the two iron balls which correct the effects of ferromagnetic materials

Like any magnetic device, compasses are affected by nearby ferrous materials as well as by strong local electromagnetic forces. Compasses used for wilderness land navigation should never be used in close proximity to ferrous metal objects or electromagnetic fields (batteries, car bonnets (automobile hoods), engines, steel pitons, wristwatches, etc).[70]

Compasses used in or near trucks, cars or other mechanized vehicles are particularly difficult to use accurately, even when corrected for deviation by the use of built-in magnets or other devices. Large amounts of ferrous metal combined with the on-and-off electrical fields caused by the vehicle's ignition and charging systems generally result in significant compass errors.

At sea, a ship's compass must also be corrected for errors, called deviation, caused by iron and steel in its structure and equipment. The ship is swung, that is rotated about a fixed point while its heading is noted by alignment with fixed points on the shore. A compass deviation card is prepared so that the navigator can convert between compass and magnetic headings. The compass can be corrected in three ways. First the lubber line can be adjusted so that it is aligned with the direction in which the ship travels, then the effects of permanent magnets can be corrected for by small magnets fitted within the case of the compass. The effect of ferromagnetic materials in the compass's environment can be corrected by two iron balls mounted on either side of the compass binnacle. The coefficient a_0 representing the error in the lubber line, while a_1,b_1 the ferromagnetic effects and a_2,b_2 the non-ferromagnetic component.

A similar process is used to calibrate the compass in light general aviation aircraft, with the compass deviation card often mounted permanently just above or below the magnetic compass on the instrument panel. Fluxgate compasses can be calibrated automatically, and can also be programmed with the correct local compass variation so as to indicate the true heading.

Using a compass

Turning the compass scale on the map (D - the local magnetic declination)
When the needle is aligned with and superimposed over the outlined orienting arrow on the bottom of the capsule, the degree figure on the compass ring at the direction-of-travel (DOT) indicator gives the magnetic bearing to the target (mountain).

A magnetic compass points to magnetic North pole, which is approximately 1,000 miles from the true geographic North Pole. A magnetic compass's user can determine true North by finding the magnetic North and then correcting for variation and deviation. Variation is defined as the angle between the direction of true (geographic) north and the direction of the meridian between the magnetic poles. Variation values for most of the oceans had been calculated and published by 1914.[77] Deviation refers to the response of the compass to local magnetic fields caused by the presence of iron and electric currents; one can partly compensate for these by careful location of the compass and the placement of compensating magnets under the compass itself. Mariners have long known that these measures do not completely cancel deviation; hence, they performed an additional step by measuring the compass bearing of a landmark with a known magnetic bearing. They then pointed their ship to the next compass point and measured again, graphing their results. In this way, correction tables could be created, which would be consulted when compasses were used when traveling in those locations.

Mariners are concerned about very accurate measurements; however, casual users need not be concerned with differences between magnetic and true North. Except in areas of extreme magnetic declination variance (20 degrees or more), this is enough to protect from walking in a substantially different direction than expected over short distances, provided the terrain is fairly flat and visibility is not impaired. By carefully recording distances (time or paces) and magnetic bearings traveled, one can plot a course and return to one's starting point using the compass alone.[70]

Compass navigation in conjunction with a map (terrain association) requires a different method. To take a map bearing or true bearing (a bearing taken in reference to true, not magnetic north) to a destination with a protractor compass, the edge of the compass is placed on the map so that it connects the current location with the desired destination (some sources recommend physically drawing a line). The orienting lines in the base of the compass dial are then rotated to align with actual or true north by aligning them with a marked line of longitude (or the vertical margin of the map), ignoring the compass needle entirely.[70] The resulting true bearing or map bearing may then be read at the degree indicator or direction-of-travel (DOT) line, which may be followed as an azimuth (course) to the destination. If a magnetic north bearing or compass bearing is desired, the compass must be adjusted by the amount of magnetic declination before using the bearing so that both map and compass are in agreement.[70] In the given example, the large mountain in the second photo was selected as the target destination on the map.

The modern hand-held protractor compass always has an additional direction-of-travel (DOT) arrow or indicator inscribed on the baseplate. To check one's progress along a course or azimuth, or to ensure that the object in view is indeed the destination, a new compass reading may be taken to the target if visible (here, the large mountain). After pointing the DOT arrow on the baseplate at the target, the compass is oriented so that the needle is superimposed over the orienting arrow in the capsule. The resulting bearing indicated is the magnetic bearing to the target. Again, if one is using "true" or map bearings, and the compass does not have preset, pre-adjusted declination, one must additionally add or subtract magnetic declination to convert the magnetic bearing into a true bearing. The exact value of the magnetic declination is place-dependent and varies over time, though declination is frequently given on the map itself or obtainable on-line from various sites. If the hiker has been following the correct path, the compass' corrected (true) indicated bearing should closely correspond to the true bearing previously obtained from the map.[70]

See also

  • Absolute bearing
  • Azimuth
  • Beam compass
  • Boxing the compass
  • Brunton compass
  • Compass direction using a watch
  • Compass rose
  • Coordinates
  • Earth Inductor Compass
  • Fluxgate compass
  • Global positioning system (GPS)
  • Gyrocompass
  • Hand compass
  • Inertial navigation system
  • Marching line
  • Pelorus
  • Protractor compass
  • Radio compass
  • Radio direction finder
  • Relative bearing
  • Surveyor's compass
  • Thumb compass
  • Wrist compass

Gallery

Notes

  1. Seidman, David, and Cleveland, Paul, The Essential Wilderness Navigator, Ragged Mountain Press (2001), ISBN 0071361103, p. 147: Since the magnetic compass is simple, durable, and requires no separate electrical power supply, it remains popular as a primary or secondary navigational aid, especially in remote areas or where power is unavailable.
  2. Lane, p. 615
  3. 3.0 3.1 3.2 W. H. Creak: "The History of the Liquid Compass", The Geographical Journal, Vol. 56, No. 3 (1920), pp. 238-239
  4. John B. Carlson, "Lodestone Compass: Chinese or Olmec Primacy? Multidisciplinary Analysis of an Olmec Hematite Artifact from San Lorenzo, Veracruz, Mexico", Science, New Series, Vol. 189, No. 4205 (5 September, 1975), pp. 753-760 (753)
  5. Needham, Joseph; Lu Gwei-Djen (1985). Trans-Pacific Echoes and Resonances: Listening Once Again. World Scientific. pp. 21. 
  6. 6.0 6.1 Li Shu-hua, p. 180
  7. Li Shu-hua, p. 175
  8. Li Shu-hua, p. 176
  9. 9.0 9.1 Needham, p. 252
  10. Temple, p. 156.
  11. Li Shu-hua, p. 182f.
  12. Kreutz, p. 373
  13. 13.0 13.1 13.2 Needham p. 255
  14. Needham, p. 289.
  15. Needham, p. 290
  16. Kreutz, p. 373
  17. Kreutz, p. 367–383
  18. Lane
  19. Li Shu-hua, p. 175-196
  20. Zhou
  21. Ma, Appendix 2
  22. Ma, Appendix 2
  23. 23.0 23.1 23.2 Kreutz, p. 368
  24. 24.0 24.1 24.2 Kreutz, p. 369
  25. 25.0 25.1 25.2 25.3 Kreutz, p. 370
  26. Frederic C. Lane, “The Economic Meaning of the Invention of the Compass,” The American Historical Review, Vol. 68, No. 3. (Apr., 1963), p.615ff.
  27. Kreutz, p. 368–369
  28. Lane, p. 606f.
  29. Lane, p. 608
  30. Lane, p. 608 & 610
  31. Lane, p. 608 & 613
  32. Kreutz, p. 372–373
  33. Emilie Savage-Smith (1988), "Gleanings from an Arabist's Workshop: Current Trends in the Study of Medieval Islamic Science and Medicine", Isis 79 (2): 246-266 [263]
  34. 34.0 34.1 34.2 Schmidl, Petra G. (1996-1997), "Two Early Arabic Sources On The Magnetic Compass", Journal of Arabic and Islamic Studies 1: 81–132 
  35. 35.0 35.1 (King 1983, pp. 547-8)
  36. 36.0 36.1 G. R. Tibbetts (1973), "Comparisons between Arab and Chinese Navigational Techniques", Bulletin of the School of Oriental and African Studies 36 (1): 97-108 [105-6]
  37. Lane, p. 615
  38. Taylor
  39. Lane, p. 616
  40. Kreutz, p. 374
  41. Kreutz, p. 373
  42. "Hand Bearing Compass". West Marine (2004). Retrieved on 2007-12-28.
  43. Frazer, Persifor, A Convenient Device to be Applied to the Hand Compass, Proceedings of the American Philosophical Society, Vol. 22, No. 118 (Mar., 1885), p. 216
  44. The Compass Museum, The Bézard Compass, Article
  45. Barnes, Scott, Churchill, James, and Jacobson, Cliff, The Ultimate Guide to Wilderness Navigation, Globe Pequot Press (2002), ISBN 1585744905, 9781585744909, p. 27
  46. The Compass Museum, The Bézard Compass, Article
  47. Barnes, p. 27
  48. Seidman, p. 68
  49. Kjellström, Björn, 19th Hole: The Readers Take Over: Orienteering, Sports Illustrated, 3 March 1969
  50. Silva Sweden AB, Silva Sweden AB and Silva Production AB Become One Company: History, Press Release 28 April 2000
  51. Gubbins, David, Encyclopedia of Geomagnetism and Paleomagnetism, Springer Press (2007), ISBN 1402039921, 9781402039928, p. 67
  52. Fanning, A.E., Steady As She Goes: A History of the Compass Department of the Admiralty, HMSO, Department of the Admiralty (1986), pp. 1-10
  53. Gubbins, p. 67
  54. Fanning, A.E., pp. 1-10
  55. Warner, Deborah, Compasses and Coils: The Instrument Business of Edward S. Ritchie, Rittenhouse, Vol. 9, No. 1 (1994), pp. 1-24
  56. Gubbins, p. 67: The use of parallel or multiple needles was by no means a new development; their use in dry-mount marine compasses was pioneered by navigation officers of the Dutch East India Company as early as 1649.
  57. Davis, Sophia, Raising The Aerocompass In Early Twentieth-century Britain, British Journal for the History of Science, published online by Cambridge University Press, 15 Jul 2008, pp. 1-22
  58. Colvin, Fred H., Aircraft Mechanics Handbook: A Collection of Facts and Suggestions from Factory and Flying Field to Assist in Caring for Modern Aircraft, McGraw-Hill Book Co. Inc. (1918), pp. 347-348
  59. The Compass Museum, Article: Though the Creagh-Osborne was offered in a wrist-mount model, it proved too bulky and heavy in this form.
  60. Hughes, Henry A., Improvements in prismatic compasses with special reference to the Creagh-Osborne patent compass, Transactions of The Optical Society 16, London: The Optical Society (1915), pp. 17-43: The first liquid-damped compass compact enough for pocket or pouch was the Creagh-Osborne, patented in 1915 in Great Britain.
  61. Hughes, Henry A., pp. 17-43
  62. Suunto Oy, Suunto Company History, December 2001 Article
  63. Suunto Oy, Suunto Company History, December 2001 Article
  64. N. Abrahamsen: "Evidence for Church Orientation by Magnetic Compass in Twelfth-Century Denmark", Archaeometry, Vol. 32, No. 2 (1992), pp. 293-303 (293)
  65. N. Abrahamsen: "Evidence for Chruch Orientation by Magnetic Compass in Twelfth-Century Denmark", Archaeometry, Vol. 32, No. 2 (1992), pp. 293-303 (303)
  66. Ludwig and Schmidtchen, p. 62–64
  67. Ludwig and Schmidtchen, p. 64
  68. Taylor, p. 1f.
  69. Nemoto & Co. Ltd., Article: In addition to ordinary phosphorescent luminous paint (zinc sulfide), brighter photoluminescent coatings of strontium aluminate or isotopes of self-luminous tritium are now being used on modern compasses.
  70. 70.00 70.01 70.02 70.03 70.04 70.05 70.06 70.07 70.08 70.09 70.10 Johnson, G. Mark (2003-03-26). The Ultimate Desert Handbook. McGraw-Hill Professional. pp. 110. ISBN 0-07-139303-X. 
  71. U.S. Army, Map Reading and Land Navigation, FM 21-26, Headquarters, Dept. of the Army, Washington, D.C. (7 May 1993), ch. 11, pp. 1-3: Any 'floating card' type compass with a straightedge or centerline axis can be used to read a map bearing by orienting the map to magnetic north using a drawn magnetic azimuth, but the process is far simpler with a protractor compass.
  72. Kearny, Cresson H., Jungle Snafus...And Remedies, Oregon Institute Press (1996), ISBN 1884067107, pp. 164-170: In 1989, one U.S. Army jungle infantry instructor reported that about 20% of the issue lensatic compasses in his company used in a single jungle exercise in Panama were ruined within three weeks by rain and humidity.
  73. Ministry of Defence, Manual of Map Reading and Land Navigation, HMSO Army Code 70947 (1988), ISBN 0117726117, 9780117726116, ch. 8, sec. 26, pp. 6-7; ch. 12, sec. 39, p. 4
  74. Military Compass
  75. The_Jerusalem_Compass_813.asp?bhcd2=1177746874 The Incredible Jerusalem Compass - kosher jerusalem compass jerusalem kosher compass
  76. Kramer, Melvin G., U.S. Patent No. 4175333, Magnetic Compass, Riverton, Wyoming: The Brunton Company, pub. 27 November 1979: The Brunton Pocket Transit, which uses magnetic induction damping, is an exception.
  77. Wright, Monte, Most Probable Position, University Press of Kansas, Lawrence, 1972, p.7

References

External links