Cardiopulmonary resuscitation

CPR being performed on a mannequin used for training

Cardiopulmonary resuscitation (CPR) is an emergency medical procedure for a victim of cardiac arrest or, in some circumstances, respiratory arrest.[1] CPR is performed in hospitals, or in the community by laypersons or by emergency response professionals.[2]

For 50 years CPR has consisted of the combination of artificial blood circulation with artificial respiration[1] i.e., chest compressions and lung ventilation.[3] However, in March 2008 the American Heart Association and the European Resuscitation Council, in a reversal of policy, endorsed the effectiveness of chest compressions alone--without artificial respiration--for adult victims who collapse suddenly in cardiac arrest (see Cardiocerebral Resuscitation below).[4][5] CPR is generally continued, usually in the presence of advanced life support, until the patient regains a heart beat (called "return of spontaneous circulation" or "ROSC") or is declared dead.

CPR is unlikely to restart the heart, but rather its purpose is to maintain a flow of oxygenated blood to the brain and the heart, thereby delaying tissue death and extending the brief window of opportunity for a successful resuscitation without permanent brain damage. Defibrillation and advanced life support are usually needed to restart the heart.

Contents

History

Main article: History of CPR
Sign showing old Silvester and Holger-Nielson methods of resuscitation

CPR has been known in theory, if not practice, for many hundreds or even thousands of years; some claim it is described in the Bible, discerning a superficial similarity to CPR in a passage from the Books of Kings (II 4:34), wherein the Hebrew prophet Elisha warms a dead boy's body and "places his mouth over his". Up until the early 19th century, however, other methods of stimulation – such as the tobacco smoke enema – were considered equally or more potent methods of resuscitation.

In the 19th century, Doctor H. R. Silvester described a method (The Silvester Method) of artificial respiration in which the patient is laid on their back, and their arms are raised above their head to aid inhalation and then pressed against their chest to aid exhalation.[6] The procedure is repeated sixteen times per minute. This type of artificial respiration is occasionally seen in films made in the early part of the 20th century.

A second technique, called the Holger Neilson technique, described in the first edition of the Boy Scout Handbook in the United States in 1911, described a form of artificial respiration where the person was laid on their front, with their head to the side, and a process of lifting their arms and pressing on their back was utilized, essentially the Silvester Method with the patient flipped over. This form is seen well into the 1950s (it is used in an episode of Lassie during the Jeff Miller era), and was often used, sometimes for comedic effect, in theatrical cartoons of the time (see Tom and Jerry's "The Cat and the Mermouse"). This method would continue to be shown, for historical purposes, side-by-side with modern CPR in the Boy Scout Handbook until its ninth edition in 1979.

However, it was not until the middle of the 20th century that the wider medical community started to recognize and promote artificial respiration combined with chest compressions as a key part of resuscitation following cardiac arrest. The combination was first seen in a 1962 training video called "The Pulse of Life" created by James Jude, Guy Knickerbocker and Peter Safar. Jude and Knickerbocker, along with William Kouwenhouen had recently discovered the method of external chest compressions, whereas Safar had worked with James Elam to prove the effectiveness of artificial respiration. It was at Johns Hopkins University where the technique of CPR was originally developed. The first effort at testing the technique was performed on a dog. Soon afterwards, the techique was used to save the life of a child. [7] Their combined findings were presented at annual Maryland Medical Society meeting on September 16, 1960 in Ocean City, and gained rapid and widespread acceptance over the following decade, helped by the video and speaking tour they undertook. Peter Safar wrote the book ABC of resuscitation in 1957. In the U.S., it was first promoted as a technique for the public to learn in the 1970s. [8]

Mouth-to-mouth ventilation was combined with chest compressions based on the assumption that active ventilation is necessary to keep circulating blood oxygenated, and the combination was accepted without comparing its effectiveness with chest compressions alone. However, research over the past decade has shown that assumption to be in error, resulting in the AHA's acknowledgment of the effectiveness of chest compressions alone (see Cardiocerebral resuscitation below).[4]

Use in cardiac arrest

CPR training: CPR is being administrated while a second rescuer prepares for defibrillation.

The medical term for the condition in which a person's heart has stopped is cardiac arrest[9] (also referred to as cardiorespiratory arrest). CPR is used on patients in cardiac arrest in order to oxygenate the blood and maintain a cardiac output to keep vital organs alive.

Blood circulation and oxygenation are absolute requirements in transporting oxygen to the tissues. The brain may sustain damage after blood flow has been stopped for about four minutes and irreversible damage after about seven minutes. If blood flow ceases for 1 or 2 hours, the cells of the body die unless they get an adequately gradual bloodflow, (provided by cooling and gradual warming, rarely, in nature [such as in a cold stream of water] or by an advanced medical team). Because of that CPR is generally only effective if performed within 7 minutes of the stoppage of blood flow.[10] The heart also rapidly loses the ability to maintain a normal rhythm. Low body temperatures as sometimes seen in near-drownings prolong the time the brain survives. Following cardiac arrest, effective CPR enables enough oxygen to reach the brain to delay brain death, and allows the heart to remain responsive to defibrillation attempts.

If the patient still has a pulse, but is not breathing, this is called respiratory arrest and artificial respiration is more appropriate. However, since people often have difficulty detecting a pulse, CPR may be used in both cases, especially when taught as first aid (see below).

Guidelines

In 2005, new CPR guidelines[11][12] were published by the International Liaison Committee on Resuscitation (ILCOR), agreed at the 2005 International Consensus Conference on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science.[13][14] The primary goal of these changes was to simplify CPR for lay rescuers and healthcare providers alike, to maximize the potential for early resuscitation. The important changes for 2005 were:[15]

Research[11] has shown that lay personnel cannot accurately detect a pulse in about 40% of cases and cannot accurately discern the absence of pulse in about 10%. The pulse check step has been removed from the CPR procedure completely for lay persons and de-emphasized for healthcare professionals.

Alternative methods

Compression only (cardiocerebral) resuscitation

The traditional International Liaison Committee on Resuscitation approach described above has been challenged in recent years by advocates for compression-only CPR, also known as cardiocerebral resuscitation (CCR). This technique is simply chest compressions without artificial respiration. The respiration component of CPR has been a topic of major controversy over the past decade. The CCR method has been championed by the University of Arizona's Sarver Heart Center, and a study by the university,[18] claimed a 300% greater success rate over standard CPR.[19] The exceptions were in the case of drowning or drug overdose.

In March 2007, a Japanese study in the medical journal The Lancet presented strong evidence that compressing the chest, not mouth-to-mouth (MTM) ventilation, is the key to helping someone recover from cardiac arrest.[20] An editorial by Gordon Ewy MD (a proponent of CCR) in the same issue of The Lancet called for an interim revision of the ILCOR Guidelines based on the results of the Japanese study, but the next scheduled revision of the Guidelines was not until 2010. However, on March 30, 2008, the American Heart Association broke away from the ILCOR position and stated that compression-only CPR works as well as, and sometimes better than, traditional CPR.[21]

The method of delivering chest compressions remains the same, as does the rate (100 per minute), but the rescuer delivers only the compression element which, the University of Arizona claims, keeps the bloodflow moving without the interruption caused by MTM respiration. It has been claimed that the use of compression only delivery increases the chances of lay person delivering CPR.[22]

Rhythmic abdominal compressions

Rhythmic abdominal compression-CPR works by forcing blood from the blood vessels around the abdominal organs, an area known to contain about 25 percent of the body's total blood volume. This blood is then redirected to other sites, including the circulation around the heart. Findings published in the September 2007 issue of the American Journal of Emergency Medicine using pigs found that 60 percent more blood was pumped to the heart using rhythmic abdominal compression-CPR than with standard chest compression-CPR, using the same amount of effort. There was no evidence that rhythmic abdominal compressions damaged the abdominal organs and the risk of rib fracture was avoided. Avoiding mouth-to-mouth breathing and chest compressions eliminates the risk of rib fractures and transfer of infection.[23]

Self-CPR

A form of "self-CPR" termed "Cough CPR" was the subject of a hoax chain e-mail entitled "How to Survive a Heart Attack When Alone" which wrongly cited "ViaHealth Rochester General Hospital" as the source of the technique. Rochester General Hospital has denied any connection with the technique.[24][25]

Rapid coughing has been used in hospitals for brief periods of cardiac arrhythmia on monitored patients. One researcher has recommended that it be taught broadly to the public.[26][27]

However, “cough CPR” cannot be used outside the hospital because the first symptom of cardiac arrest is unconsciousness[28] in which case coughing is impossible. Further, the vast majority of people suffering chest pain from a heart attack will not be in cardiac arrest and CPR is not needed. In these cases attempting “cough CPR” will increase the workload on the heart and may be harmful. When coughing is used on trained and monitored patients in hospitals, it has only been shown to be effective for 90 seconds.[29]

The American Heart Association (AHA) and other resuscitation bodies[30] do not endorse "Cough CPR", which it terms a misnomer as it is not a form of resuscitation. The AHA does recognize a limited legitimate use of the coughing technique:

"This coughing technique to maintain blood flow during brief arrhythmias has been useful in the hospital, particularly during cardiac catheterization. In such cases the patients ECG is monitored continuously, and a physician is present."[31]

Prevalence and effectiveness

Chance of receiving CPR

Various studies suggest that in out-of-home cardiac arrest, bystanders, lay persons or family members attempt CPR in between 14%[32] and 45%[33] of the time, with a median of 32%. This indicates that around 1/3 of out-of-home arrests have a CPR attempt made on them. However, the effectiveness of this CPR is variable, and the studies suggest only around half of bystander CPR is performed correctly.[34][35]

There is a clear correlation between age and the chance of CPR being commenced, with younger people being far more likely to have CPR attempted on them prior to the arrival of emergency medical services.[32][36] It was also found that CPR was more commonly given by a bystander in public than when an arrest occurred in the patient's home, although health care professionals are responsible for more than half of out-of-hospital resuscitation attempts.[33] This is supported by further research, which suggests that people with no connection to the victim are more likely to perform CPR than a member of their family.[37]

There is also a correlation between the cause of arrest and the likelihood of bystander CPR being initiated. Lay persons are most likely to give CPR to younger cardiac arrest victims in a public place when it has a medical cause; victims in arrest from trauma, exsanguination or intoxication are less likely to receive CPR.[37]

Finally, it has been claimed that there is a higher chance of CPR being performed if the bystander is told to only perform the chest compression element of the resuscitation.[22]

Chance of receiving CPR in time

CPR is only likely to be effective if commenced within 6 minutes after the blood flow stops,[38] because permanent brain cell damage occurs when fresh blood infuses the cells after that time, since the cells of the brain become dormant in as little as 4-6 minutes in an oxygen deprived environment and the cells are unable to survive the reintroduction of oxygen in a traditional resuscitation. Research using cardioplegic blood infusion resulted in a 79.4% survival rate with cardiac arrest intervals of 72±43 minutes, traditional methods achieve a 15% survival rate in this scenario, by comparison. New research is currently needed to determine what role CPR, electroshock, and new advanced gradual resuscitation techniques will have with this new knowledge[39] A notable exception is cardiac arrest occurring in conjunction with exposure to very cold temperatures. Hypothermia seems to protect the victim by slowing down metabolic and physiologic processes, greatly decreasing the tissues' need for oxygen.[40] There are cases where CPR, defibrillation, and advanced warming techniques have revived victims after substantial periods of hypothermia.[41]

Chance of surviving

Used alone, CPR will result in few complete recoveries, and those that do survive often develop serious complications. Estimates vary, but many organizations stress that CPR does not "bring anyone back," it simply preserves the body for defibrillation and advanced life support.[42] However, in the case of "non-shockable" rhythms such as Pulseless Electrical Activity (PEA), defibrillation is not indicated, and the importance of CPR rises. On average, only 5%-10% of people who receive CPR survive.[43] The purpose of CPR is not to "start" the heart, but rather to circulate oxygenated blood, and keep the brain alive until advanced care (especially defibrillation) can be initiated. As many of these patients may have a pulse that is impalpable by the layperson rescuer, the current consensus is to perform CPR on a patient that is not breathing.

Studies have shown the importance of immediate CPR followed by defibrillation within 3–5 minutes of sudden VF cardiac arrest improve survival. In cities such as Seattle where CPR training is widespread and defibrillation by EMS personnel follows quickly, the survival rate is about 30 percent. In cities such as New York City, without those advantages, the survival rate is only 1-2 percent.[44]

Type of Arrest ROSC Survival Source
Witnessed In-Hospital Cardiac Arrest 48% 22% [45]
Unwitnessed In-Hospital Cardiac Arrest 21% 1% [45]
Bystander Cardiocerebral Resuscitation 40% 6% [46]
Bystander Cardiopulmonary Resuscitation 40% 4% [46]
No Bystander CPR (Ambulance CPR) 15% 2% [46]
Defibrillation within 3-5 minutes 74% 30% [42][44]

ROSC - Return of spontaneous circulation

Therapeutic Hypothermia

Main article: Therapeutic hypothermia

In some cases, doctors may choose to induce hypothermia after return of spontaneous circulation (ROSC). This procedure is called therapeutic hypothermia. The first study conducted in Europe focused on people who were resuscitated 5-15 minutes after collapse. Patients participating in this study experienced spontaneous return of circulation (ROSC) after an average of 105 minutes. Subjects were then cooled over a 24 hour period, with a target temperature of 32-34°C (89.6-93.2°F). 55% of the 137 patients in the hypothermia group experienced favorable outcomes, compared with only 39% in the group that received standard care following resuscitation.[47] Death rates in the hypothermia group were 14% lower, meaning that for every 7 patients treated one life was saved.[47] Notably, complications between the two groups did not differ substantially. This data was supported by another similarly run study that took place simultaneously in Australia. In this study 49% of the patients treated with hypothermia following cardiac arrest experienced good outcomes, compared to only 26% of those who received standard care.[48]

Chest compression adjuncts

Several different devices have become available in order to help facilitate rescuers in getting the chest compressions completed correctly. These devices can be split in to three broad groups - timing devices, those that assist the rescuer to achieve the correct technique, especially depth and speed of compressions, and those which take over the process completely.

Timing devices

They can feature a metronome (an item carried by many ambulance crews) in order to assist the rescuer in getting the correct rate. The CPR trainer cited here has timed indicators for pressing on the chest, breathing and changing operators.

Manual assist devices

These items can be devices to placed on top of the chest, with the rescuers hands going over the device, and a display giving information on depth or force.[49] Several published evaluations of one particular product, known as CPREzy, with these features show that the device can improve the performance of chest compressions.[50][51] More recently, these features have also been combined in to a wearable format, as a glove.[52] This glove also has additional features such as a basic electro-cardiogram device. This device was developed by students as part of their thesis, and has been named as one of the top ten inventions of 2007 in Popular Science magazine.[53]

Certain ZOLL defibrillation pads are capable of performing similar function, in that they may display rate and depth of compressions. Additionally, a certain algorithm allows them to monitor electrical activity even during CPR ("see-thruCPR").

Automatic devices

There are also some devices available which take over the chest compressions for the rescuer. These devices use techniques such as pneumatics to drive a compressing pad on to the chest of the patient. One such device, known as the LUCAS, was developed at the University Hospital of Lund, is powered by the compressed air cylinders or lines available in ambulances or in hospitals, and has undergone numerous clinical trials, showing a marked improvement in coronary perfusion pressure[54] and return of spontaneous circulation.[55]

Another system called the AutoPulse is electrically powered and uses a large band around the patients chest which contracts in rhythm in order to deliver chest compressions. This is also backed by clinical studies showing increased successful return of spontaneous circulation.[56][57]

Place in film and television

Portrayed effectiveness

CPR is often severely misrepresented in movies and television as being highly effective in resuscitating a person who is not breathing and has no circulation. A 1996 study published in the New England Journal of Medicine showed that CPR success rates in television shows was 75%.[58]

Stage-CPR

Chest compressions are capable of causing significant local trauma. Also, in theory performing CPR on healthy persons may disrupt heart rhythms.[59]

To prevent these outcomes, CPR technique portrayed on television and in film are purposely incorrect. Actors simulating CPR will keep their elbows bent, to prevent force from reaching the fictional victim's heart.

Application on animals

It is entirely feasible to perform CPR on animals like cats and dogs. The principles and practices are virtually identical to CPR for humans. One is cautioned to only perform CPR on unconscious animals to avoid the risk of being bitten[60] and that animals, depending on species, have a smaller bone density than humans causing bones to become weakened after CPR is performed.

See also

References

  1. 1.0 1.1 "US National Library of Medicine Encyclopedia - Definition of CPR". Retrieved on 2007-06-12.
  2. "US Red Cross list of courses for all skill levels". Retrieved on 2007-06-12.
  3. "Resuscitation Council UK Comment on Compression Only CPR". Retrieved on 2007-06-12.
  4. 4.0 4.1 "Hands-Only (Compression-Only) Cardiopulmonary Resuscitation: A Call to Action for Bystander Response to Adults Who Experience Out-of-Hospital Sudden Cardiac Arrest.". Retrieved on 2008-04-02.
  5. "Advisory statement of the European Resuscitation Council: Advisory statement of the European Resuscitation Council on Basic Life Suppport.". Retrieved on 2008-06-13.
  6. "Silvester's method". University College London. Retrieved on 2007-06-12.
  7. "Arrhythmias". Johns Hopkins Medicine. Retrieved on 2008-09-06.
  8. See, e.g., "Award of the Heart", TIME magazine, November 28, 1973, retrieved on 05-28-2008 from time.com
  9. "Definition of Cardiac Arrest". American Heart Association. Retrieved on 2007-06-13.
  10. Newsweek 2007-05-07
  11. 11.0 11.1 "Adult Basic Life Support". American Heart Association. Retrieved on 2007-06-13.
  12. "Pediatric Basic Life Support". American Heart Association. Retrieved on 2007-06-13.
  13. "Adult Basic Life Support". American Heart Association. Retrieved on 2007-06-13.
  14. "Pediatric Basic and Advanced Life Support". American Heart Association. Retrieved on 2007-06-13.
  15. "Overview of CPR". American Heart Association. Retrieved on 2007-06-13.
  16. "Australian Resuscitation Council Guidelines as of March 6" (PDF). Retrieved on 2007-06-13.
  17. "Resuscitation Council UK Paediatric Advanced Life Support Guidelines" (PDF). Retrieved on 2007-06-13.
  18. "A better sort of CPR". Retrieved on 2007-06-16.
  19. Ewy, Gordon A (24 November 2004). "A new Cardiopulmonary resuscitation". Circulation (American Heart Association) 111 (2134-2142): 2134. doi:10.1161/01.CIR.0000162503.57657.FA. PMID 15851620. http://circ.ahajournals.org/cgi/content/full/111/16/2134?etoc. Retrieved on 2007-06-15. 
  20. "Cardiopulmonary resuscitation by bystanders with chest compression only (SOS-KANTO): an observational study". Lancet 69(9565): 920–6). March 17, 2007. 
  21. Heart Association: Hands-only CPR works
  22. 22.0 22.1 Ewy, Gordon A (June 2008). "Cardiocerebral Rescitation: Could this new model of CPR hold promise for better rates of neurologically intact survival?". EMS Magazine (Cygnus) 37 (6): 41-49. http://emsresponder.com/print/Emergency--Medical-Services/CARDIOCEREBRAL-Resuscitation/1$7857. Retrieved on 2008-08-02. 
  23. Research: Abdomen pushing key to new CPR technique?
  24. "ViaHealth Rochester General Hospital statement on 'Cough CPR' email". Retrieved on 2007-06-13.
  25. "Snopes Urban Legends Reference - Cough CPR". Retrieved on 2007-06-13.
  26. Rieser M (May-June 1992). "The use of cough-CPR in patients with acute myocardial infarction.". J Emerg Med 10 (3): 291–3. doi:10.1016/0736-4679(92)90335-Q. PMID 1624741. 
  27. Associated Press (October 31, 2003). "Cough may help during heart attack -- Technique may allow patients to stay conscious, study finds". 
  28. Australian Resuscitation Council Newsletter (2003) Vol. 27 No. 3 p. 2; available at http://www.resus.org.au/newsletters/newsletter_nov_2003.pdf
  29. Australian Resuscitation Council Newsletter (2005) Vol. 29 No. 3 p. 2; available at http://www.resus.org.au/newsletters/newsletter_dec2005.pdf
  30. Australian Resuscitation Council Newsletter (2005) Vol. 29 No. 3 p. 2; available at http://www.resus.org.au/newsletters/newsletter_dec2005.pdf
  31. "Cough CPR". American Heart Association. Retrieved on 2007-06-13.
  32. 32.0 32.1 Swor, RA (June 1995). "Bystander CPR, ventricular fibrillation and survival in witnessed, unmonitored out-of-hospital cardiac arrest". Annals of Emergency Medicine 25 (6): 780–4. doi:10.1016/S0196-0644(95)70207-5. PMID :7755200. 
  33. 33.0 33.1 Wik, L; Steen PA; Bircher NH (December 1994). "Quality of bystander cardiopulmonary resuscitation influence outcome after prehospital cardiac arrest". Resuscitation 28 (4): 195–203. doi:10.1016/0300-9572(94)90064-7. PMID : 7740189. 
  34. Van Hoeyweghen, RJ; Bossaert LL; Mullie (August 1993). "Quality and efficiency of bystander CPR. Belgian Cerebral Resuscitation Study Group". Resuscitation 26 (1): 47–52. 
  35. Gallagher, EJ; Lombardi G; Gennis P (December 1995). "Effectiveness of bystander cardiopulmonary resuscitation and survival following out-of-hospital cardiac arrest". JAMA 274 (24). PMID : 8568985. 
  36. jackson, RE; Swor RA (June 1997). "Who gets bystander cardiopulmonary resuscitation in a witnessed arrest?". Academy of Emergency Medicine 4 (6): 560–4. PMID : 9189184. 
  37. 37.0 37.1 Bossaert, L; Van Hoeyweghen R (1989). "Bystander cardiopulmonary resuscitation in out-of-hospital cardiac arrest. The Cerebral Resuscitation study group". Resuscitation 17 (Suppl S55-69). PMID : 2551021. 
  38. Cummins, RO; Eisenberg MS; Hallstrom AP; Litwin PE (March 1985). "Survival of out-of-hospital cardiac arrest with early initiation of cardiopulmonary resuscitation". American Journal of Emergency Medicine 3 (2): 114–9. PMID : 3970766. 
  39. Athanasuleas, Constantine; Buckberg, Gerald D.;Allen, Bradley S.; Beyersdorf, Friedhelm; Kirsh, Marvin M. (2006). "Sudden cardiac death: directing the scope of resuscitation towards the heart and brain." (PDF). Resuscitation 70 (1): 44–51. doi:10.1016/j.resuscitation.2005.11.017. PMID 16759784 ISSN 0300-9572. http://repositories.cdlib.org/cgi/viewcontent.cgi?article=5092&context=postprints. Retrieved on 2007-05-02. 
  40. Guilfoy, Christine (18 July 2006). "Heart has enough oxygen to survive hypothermia". American Journal of Physiology - Heart and Circulatory Physiology. http://www.eurekalert.org/pub_releases/2006-07/aps-hhe071206.php. Retrieved on 2007-06-14. 
  41. Eich, Christoph; Brauer, Anselm; Kettler, Dietrich (2005). "Recovery of a hypothermic drowned child after resuscitation with cardiopulmonary bypass followed by prolonged extracorporeal membrane oxygenation" (PDF). Resuscitation 67 (1): 145–8. doi:10.1016/j.resuscitation.2005.05.002. PMID 16129537 ISSN 0300-9572. http://www.sciencedirect.com/science?_ob=MImg&_imagekey=B6T19-4H0BT55-6-2&_cdi=4885&_user=10&_orig=browse&_coverDate=10%2F31%2F2005&_sk=999329998&view=c&wchp=dGLbVtz-zSkWW&md5=77efe410bf27606a0386b5d6ab8d387d&ie=/sdarticle.pdf. Retrieved on 2007-01-29. 
  42. 42.0 42.1 "CPR statistics". American Heart Association. Retrieved on 2007-06-14.
  43. WebMD Medical News. "Real CPR isn't everything it seems to be". Retrieved on 2007-06-13.
  44. 44.0 44.1 Cardiopulmonary Resuscitation (CPR) Statistics
  45. 45.0 45.1 Brindley, Peter G; Markland, Darren M. Kutsogiannis, Demetrios J (2002-08-20). "Predictors of survival following in-hospital adult cardiopulmonary rescuitation". Canadian Medical Association Journal 174 (4). PMID 12197686. http://www.cmaj.ca/cgi/content/full/167/4/343. Retrieved on 2007-06-14. 
  46. 46.0 46.1 46.2 "Resuscitation Council Comment on CPR study". Resuscitation Council UK (April 2007). Retrieved on 2007-06-14.
  47. 47.0 47.1 Holzer, Michael. “Mild Hypothermia to Improve the Neurologic Outcome After Cardiac Arrest.” New England Journal of Medicine. (2002) Vol. 346, No. 8.
  48. Bernard, Stephen et al. "Treatment of Comatose Survivors of Out-of-Hospital Cardiac Arrest with Induced Hypothermia." N England Journal of Medicine. (2002) Vol. 346, No. 8.
  49. "CPREzy". Retrieved on 2007-08-18.
  50. Perkins, Gavin D; Augre, Colette; Rogers, Helen;Allan, Michael; Thickett, David R (23 August 2004). "CPREzy: an evaluation during simulated cardiac arrest on a hospital bed" (PDF). Resuscitation 64 (2005). doi:10.1016/j.resuscitation.2004.08.011) (inactive 2008-06-26). http://www.cprezy.com/PDF/CPREzy%20on%20Hosp%20Bed%20(GDP).pdf. 
  51. Boyle, Andrew J; Wilson, Andrew M; Connelly, Kim; McGuigan, Louisa; Wilson, Jenny; Whitbourn, Robert (March 2002). "CPREzy:an evaluation during simulated cardiac arrest on a hospital bed". Resuscitation 54 (2002). 
  52. "CPR Glove Website". Retrieved on 2007-08-18.
  53. Rosenwald, Mike. "The glove that saves lives". Popular Science Magazine. Retrieved on 2007-08-20.
  54. Steen et al (2002). "Evaluation of LUCAS, a new device for automated mechanical compression and active decompression". Resuscitation 55. 
  55. Rubertsson et al. (2006). "Increased restoration of spontaneous circulation after cardiac arrest with the LUCAS device compared to manual chest compressions". Resuscitation 69. 
  56. Casner, M; Anderson, D; Isaacs, SM (January-March 2005). "The impact of a new CPR assist device on the rate of return of spontaneous circulation in out-of-hospital cardiac arrest". Prehospital Emergency Care 9 (1). http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=Retrieve&db=pubmed&dopt=AbstractPlus&list_uids=16036830&query_hl=11&itool=pubmed_docsum. 
  57. Hallstrom, Al; Rea, Thomas; Sayre, Michael; Christenson, James; Anton, Andy; Mosesso, Vince; Ottingham, Lois; Olsufka, Michele; Pennington, Sarah; White, Lynn; Yahn, Stephen; Husar, James; Morris, Mary; Cob, Leonard. "Manual chest compression vs use of an automated chest compression device during resuscitation following out-of-hospital cardiac arrest" (PDF). Journal of the American Medical Association 295 (22). http://jama.ama-assn.org/cgi/reprint/jama;295/22/2620.pdf?ijkey=V96Oxk0wfyGibgF&keytype=finite. 
  58. "CPR statistics". American Heart Association. Retrieved on 2007-06-13.
  59. "CPR course descriptions". CPR Long Island. Retrieved on 2008-02-25.
  60. "CPR for Cats & Dogs". University of Washington School of Medicine.

External links