Bioluminescence

Female of Lampyris noctiluca

Bioluminescence is the production and emission of light by a living organism as the result of a chemical reaction during which chemical energy is converted to light energy. Its name is a hybrid word, originating from the Greek bios for "living" and the Latin lumen "light". Adenosine triphosphate (ATP) is involved in most instances. The chemical reaction can occur either inside or outside the cell. In bacteria, the expression of genes related to bioluminescence is controlled by an operon called the Lux operon. Bioluminescence has appeared independently several times (up to 30 or more) during evolution[1].

Bioluminescence occurs in marine vertebrates and invertebrates, as well as microorganisms and terrestrial animals. Symbiotic organisms carried within larger organisms are also known to bioluminesce.

Contents

Characteristics

Bioluminescence is a form of luminescence, or "cold light" emission; less than 20% of the light generates thermal radiation. It should not be confused with fluorescence, phosphorescence or refraction of light.

Ninety percent of deep-sea marine life is estimated to produce bioluminescence in one form or another. Most marine light-emission belongs in the blue and green light spectrum, the wavelengths that can transmit through the seawater most easily. However, certain loose-jawed fish emit red and infrared light and the genus Tomopteris emits yellow bioluminescence.

Non-marine bioluminescence is less widely distributed, but a larger variety in colours is seen. The two best-known forms of land bioluminescence are fireflies and glow worms. Other insects, insect larvae, annelids, arachnids and even species of fungi have been noted to possess bioluminescent abilities.

Some forms of bioluminescence are brighter (or only exist) at night, following a circadian rhythm.

Image of bioluminescent red tide event of 2005 at a beach in Carlsbad California showing brilliantly glowing crashing waves containing billions of Lingulodinium polyedrum dinoflagellates.

Adaptations for bioluminescence

There are five main accepted theories for the evolution of bioluminescent traits:

Camouflage

For more details on this topic, see Camouflage.

Attraction

Firefly larva

Bioluminescence is used as a lure to attract prey by several deep sea fish such as the anglerfish. A dangling appendage that extends from the head of the fish attracts small animals to within striking distance of the fish. Some fish, however, use a non-bioluminescent lure.

The cookiecutter shark uses bioluminescence for camouflage, but a small patch on its underbelly remains dark and appears as a small fish to large predatory fish like tuna and mackerel. When these fish try to consume the "small fish", they are eaten by the shark.

Dinoflagellates have an interesting twist on this mechanism. When a predator of plankton is sensed through motion in the water, the dinoflagellate luminesces. This in turn attracts even larger predators which will consume the would-be predator of the dinoflagellate.

The attraction of mates is another proposed mechanism of bioluminescent action. This is seen actively in fireflies, which use periodic flashing in their abdomens to attract mates in the mating season. In the marine environment this has only been well-documented in certain small crustaceans called ostracod. It has been suggested that pheromones may be used for long-distance communication, and bioluminescent used at close range to "home in" on the target.

Repulsion

Certain squid and small crustaceans use bioluminescent chemical mixtures or bioluminescent bacterial slurries in the same way as many squid use ink. A cloud of luminescence is expelled, confusing or repelling a potential predator while the squid or crustacean escapes to safety. Every species of firefly has larvae that glow to repel predators.

Communication

Bioluminescence is thought to play a direct role in communication between bacteria (see quorum sensing). It promotes the symbiotic induction of bacteria into host species, and may play a role in colony aggregation.

Illumination

While most marine bioluminescence is green to blue, the Black Dragonfish produces a red glow. This adaptation allows the fish to see red-pigmented prey, which are normally invisible in the deep ocean environment where red light has been filtered out by the water column.

Biotechnology

Artistic rendering of bioluminescent Antarctic krill (watercolor by Uwe Kils)

Bioluminescent organisms are a target for many areas of research. Luciferase systems are widely used in the field of genetic engineering as reporter genes. Luciferase systems have also been harnessed for biomedical research using bioluminescence imaging.

Vibrio symbiosis with numerous marine invertebrates and fish, namely the Hawaiian Bobtail Squid (Euprymna scolopes), are key experimental model for symbiosis, quorum sensing, and bioluminescence.

The structure of photophores, the light producing organs in bioluminescent organisms, are being investigated by industrial designers.

Some proposed applications of engineered bioluminescence include:

Organisms that bioluminesce

Omphalotus nidiformis
Example of a bioluminescent species of mushroom...
Example of a bioluminescent species of mushroom...
...glowing with the lights off.
...glowing with the lights off.
Firefly (species unknown) with and without flash.

All cells produce some form of bioluminescence within the electromagnetic spectrum, but most are neither visible nor noticeable to the naked eye. Every organism's bioluminescence is unique in wavelength, duration, timing and regularity of flashes. Below follows a list of organisms which have been observed to have visible bioluminescence.

Terrestrial organisms

Fish

Marine invertebrates

Microorganisms

See also

References

  1. Hastings,J.W. Biological diversity, chemical mechanisms, and the evolutionary origins of bioluminescent systems. J. Mol. Evol. 19,309 (1983)

External links