Atari ST

Atari ST (family)
Atari 1040STf.jpg
Type Personal computer
Release date 1985
Discontinued 1993
Operating system Atari TOS
CPU Motorola 68000 @ 8 MHz
Memory 512 kilobytes (512×210 bytes) to 4 megabytes (4×220 bytes)

The Atari ST is a home/personal computer that was commercially available from 1985 to the early 1990s. It was released by Atari Corporation in 1985. The "ST" officially stands for "Sixteen/Thirty-two",[1] which referred to the Motorola 68000's 16-bit external bus and 32-bit internals.

Contents

Overview

The Atari ST was part of the 16/32 bit generation of home computers, based on the Motorola 68000 CPU, with 512 KB of RAM or more, and 3½" floppy disks as storage. It was similar to other contemporary machines which used the Motorola 68000, the Apple Macintosh and the Commodore Amiga. Although the Macintosh was the first widely available computer with a graphical user interface (GUI), it was limited to a monochromatic display on a smaller built-in monitor. Preceding the Amiga's commercial release by almost two months,[2][3] the Atari ST was the first computer to come with a fully bit-mapped color GUI[4], using a version of Digital Research's GEM released that February [5]. It was also the first home computer with integrated MIDI support.

The ST was primarily a competitor to the Apple Macintosh and the Commodore Amiga systems. This platform rivalry was often reflected by the owners and was most prominent in the Demo Scene. Where the Amiga had custom processors which gave it the edge in the games and video market, the ST was generally cheaper, had a slightly faster CPU, and had a high-resolution monochrome display mode, ideal for business and CAD.

Thanks to its built-in MIDI ports it enjoyed success as a music sequencer and controller of musical instruments among amateurs and professionals alike, being used in concert by bands such as Tangerine Dream, Fatboy Slim and 90s UK dance act 808 State.

In some markets, particularly Germany, the machine gained a strong foothold as a small business machine for CAD and Desktop publishing work.

The ST was later superseded by the Atari TT and Falcon computers.

Since Atari pulled out of the computer market there has been a market for powerful TOS-based machines (clones). Like most "retro" computers the Atari enjoys support in the emulator scene.

Origins

Tramel Technology

At Commodore International an argument involving Commodore's chairman (and largest shareholder) Irving Gould and Commodore founder Jack Tramiel ensued over Tramiel's desire for his sons to take more active executive roles within Commodore. The argument resulted in Tramiel's immediate departure from Commodore on January 13, 1984[6].

Tramiel immediately formed a holding company, Tramel Technology, Ltd., and began to visit various US computer companies with the intention of purchasing a company. Tramiel visited Mindset (run by Roger Badersher, former head of Atari's Computer Division) and Amiga where Tramiel told Amiga staff that he was very interested in the chipset, but not the staff. Tramiel set his chief engineer - Shiraz Shivji - the task of developing a new low-cost, high-end computer system. The original design considered using the NS32032, but in talks, National Semiconductor could not supply the chip in the numbers or price that the project required. In retrospect this proved to be fortunate as a prototype built on the NS32032 benchmarked slower than the 16/32-bit 68000.

The project, codenamed "RBP" for 'Rock Bottom Price', began to form between April and July 1984 into a design that was almost identical to the ST that eventually shipped. The design was a combination of custom chips and commonly available parts in a highly integrated single-board design, fully equipped with standard and custom ports.

Amiga contract

Prior to the introduction of the ST, Atari's computer division developed a line of home computers based on the 6502 CPU. The machines used a set of custom VLSI processors - ANTIC (DMA), CTIA/GTIA (Graphics), POKEY (AUDIO) and PIA (I/O) and were sold from 1979 through 1982 as the Atari 400 (16K) and Atari 800 (48k). In 1982 Atari introduced the 1200XL, which was too closed a design and was replaced with the 600XL/800XL series. Atari prepared several high-end computers for introduction in 1984, but these were cancelled when the Tramiels took over Atari. Several months prior to the release of the ST line, Atari released its 65XE (64K) and 130XE(128k) computers to replace the XL series 6502 8-bit computers.

Jay Miner, one of the original designers for the custom chips found in the Atari 2600 and Atari 8-bit machines, tried to convince Atari management to invest big money into creating a new chipset and console/computer idea. When his idea was rejected, Miner left Atari to form a small think tank called Hi-Toro in 1982 and set about designing this new chipset. The company - which was later renamed Amiga - started selling various video game controllers and games while it developed its "Lorraine" computer system.

During development, Amiga had run out of capital to complete the development of its Lorraine chipset, and the "Warner owned" Atari had paid Amiga to continue development work.[7] In return Atari was to get one-year exclusive use of the design as a video game console. After one year Atari would have the right to add a keyboard and market the complete Amiga computer. The Atari Museum has acquired the Atari-Amiga contract and Atari engineering logs revealing that the Atari Amiga was originally designated as the 1850XLD. As Atari was heavily involved with Disney at the time, it was later code-named "Mickey", and the 256K memory expansion board was codenamed "Minnie".[8]

The following year, Tramiel discovered that Warner Communications wanted to sell Atari, which at that point was losing about $1,000,000 a day. Interested in Atari's overseas manufacturing and world wide distribution network for his new computer, he approached Atari and entered talks. After on again/off again negotiations with Atari in May and June 1984, Tramiel had secured his funding and bought Atari's Consumer Division (which included the console and home computer departments) that July.

As more executives and researchers left Commodore to join Tramiel's new company Atari Corp. after the announcement, Commodore followed by filing lawsuits against four former engineers for theft of trade secrets. This was intended to, in effect, bar Tramiel from releasing his new computer.

One of Tramiel's first acts after forming Atari Corp. was to fire most of Atari's remaining staff and cancel almost all ongoing projects in order to review their continued viability. It was during this time in late July/early August that Tramiel representatives discovered the original Amiga contract.

It turned out that Amiga was supposed to deliver the Amiga chipset to Atari on June 30, 1984. The Amiga crew, having continuing serious financial problems, had sought more monetary support from investors that Spring (one of which had been Tramel Technology, which ended quickly given his desire to replace nearly everyone at Amiga). Having heard rumors that Tramiel was in closed negotiations to complete the purchase of Atari in several days - at around the same time that Tramiel was in negotiations with Atari - Amiga entered in to discussions with Commodore. The discussions ultimately led to Commodore wanting to purchase Amiga outright, which would (from Commodore's viewpoint) cancel any outstanding contracts - including Atari Inc.'s. So instead of Amiga delivering the chipset, Commodore delivered a check of $500,000 to Atari on Amiga's behalf, in effect returning the funds invested into Amiga for completion of the Lorraine chipset. Seeing a chance to gain some leverage Tramiel immediately used the situation to countersue Commodore through its new (pending) subsidiary, Amiga, which was done on August 13, 1984. He sought damages and an injunction to bar Amiga (and effectively Commodore) from producing anything with that technology. The suit tried to render Commodore's new acquisition (and the source for its next generation of computers) useless and do to Commodore what they were trying to do to him.

Meanwhile at Commodore, the Amiga team (according to conversations by Curt Vendel of Atarimuseum.com directly with Dave Needles of Amiga and also with Joe Decuir of Amiga) was sitting in limbo for nearly the entire summer because of the lawsuit. No word on the status of the chipset, the Lorraine computer system or the team's fate was known. Finally in the fall of 1984 Commodore informed the team that the Lorraine project was active again, the chipset to be improved, the OS developed and the hardware design completed. This delay bought Atari several additional months in 1985 to release Atari STs to Atari User Groups in June 1985 and to go into full retail sales of the Atari 520ST in September 1985.

In March 1987, the two companies settled the dispute out of court in a closed decision.

This chapter is used on Wikipedia with permission from http://www.atarimuseum.com

Ironically, the two home computer rivals essentially performed a swap of 16/32-bit platforms, with the ST being designed by ex-Commodore engineers,[9] and the Amiga by ex-Atarians.[10] In light of the later wars between Atari and Amiga owners, what is even more ironic is that Atari already had several prototypes of computers which were superior to both the Amiga and ST. The Sierra 68000 used a new chipset called "Silver & Gold", and the Gaza was a dual MC68000 processor system using a new chipset called "Rainbow". Though Warner Atari liked the projects, they were canceled when James J. Morgan was CEO and wanted Atari to return to its video game roots. Jack Tramiel was unaware of their existence when he bought Atari.[11]

The operating system

With the hardware design nearing completion, the team started looking at solutions for the operating system. Soon after the buyout, Microsoft approached Tramiel with the suggestion that they port Windows to the platform, but the delivery date was out by about two years, far too long for their needs. Another possibility was Digital Research, who were working on a new GUI-based system then known as Crystal, soon to become GEM. Another option was to write a new operating system in-house, but this was eventually rejected due to the risk.

Digital Research was fully committed to the Intel platform, so a team from Atari was sent to the Digital Research headquarters to work with the "Monterey Team" which comprised a mixture of Atari and Digital Research engineers. Atari's Jim Tittsler was Atari key OS engineer overseeing "Project Jason" (aka - The Operating System) for the Atari ST line of computers. The name came from the original designer and developer, Jason Loveman. Tim Oren has an article describing the history of the project, from his series "Professional GEM."

CP/M-68K was essentially a direct port of CP/M's original, mature operating system. By 1985, it was becoming increasingly outdated in comparison to MS-DOS 2.0; for instance, CP/M did not support sub-directories and did not have a hierarchical file system. Digital Research was also in the process of building a new DOS-like operating system specifically for GEM, GEMDOS, and there was some discussion of whether or not a port of GEMDOS could be completed in time for product delivery in June. The decision was eventually taken to port it, resulting in a GEMDOS file system which became part of TOS (The Operating System). This was beneficial as it gave the ST a fast, hierarchical file system, essential for hard drive storage disks, plus programmers had function calls similar to the IBM PC DOS.

Debut of the ST

The Atari 520ST was officially launched at the Winter Consumer Electronics Show in Las Vegas in January 1985.[9] Due to its similarities to the original Apple Macintosh, it was quickly nicknamed the "Jackintosh". The 520ST shipped during May and June 1985 to the press and Atari User Groups[12] and then in early July 1985 for general retail sales. The machine had gone from concept to store shelves in a little under a year. Atari had originally intended to release versions with 128 KB and 256 KB of RAM as the 130ST and 260ST respectively. However, with the OS loaded from floppy into RAM, there would be little or no room left over for applications to run. The 260ST did make its way into Europe on a limited basis.

The ST could support a monochrome or color monitor. The monochrome monitor was less expensive and had higher resolution (640x400). The hardware supported two different color resolution, 320x200 with 16 colors, or 640x200 with 4 colors. The monochrome monitor was better suited to business applications. Color was required by many games.

Early models shipped with TOS on disk, but were designed with ROM sockets to make for easy upgrading to the future ROM based TOS. These became available only a few months later, and were included in all new machines, as well as being available to upgrade older machines. By late 1985 the machines were also upgraded with the addition of an RF modulator (for TV display), a version known as the 520STM.

Atari had originally intended to include GEM's GDOS (Graphical Device Operating System), which allowed programs to send GEM VDI (Virtual Device Interface) commands to drivers loaded by GDOS. This allowed developers to send VDI instructions to other devices simply by pointing to it. However, GDOS was not ready at the time the ST started shipping, and was included in software packages and later ST machines. Later versions of GDOS supported vector fonts.

A limited set of GEM fonts were also included within the ROMs. These fonts also featured two additions:

On the plus side, the ST was less expensive than most machines, including the Macintosh Plus, and tended to be faster than most (external link: price comparison). Largely as a result of the price/performance factor, the ST would go on to be a fairly popular machine, notably in European markets where the foreign exchange rates amplified prices. Indeed, the company's English advertising strapline of the era was "power without the price." In fact, an Atari ST and terminal emulation software was much cheaper than a Digital VT220 terminal, which was commonly needed by offices with central computers.

Description

Housing

The Atari 520ST

The 520ST was an all-in-one unit, similar to earlier home computers like the Commodore 64. By the time the 520ST reached the market, however, consumers demanded a keyboard with cursor keys and a numeric keypad. For this reason, the 520ST was a fairly large and awkward computer console.

Adding to this problem was the number of large cables needed to connect to the peripherals. This problem was addressed to some degree in the follow-on models which included a built-in floppy disk drive, though this addition resulted in the awkward placement of the mouse and joystick ports to a cramped niche underneath the keyboard.

Early 520ST owners became accustomed to the "Atari Twist" and the "Atari Drop" service procedures. "Atari Twist" seemed to help discharge built-up static electricity (Atari soldered-down the metal shielding to fix the problem) while the "Atari Drop" appeared to help re-seat chips which may have become partially unseated over time.

The case design was created by Ira Valenski - Atari's chief Industrial Designer[13] whose aesthetic sensibility brought a stylish and attractive look which was unique in an industry traditionally providing an industrial utilitarian look, and certainly a factor which helped sales. The ST featured bold angular lines and was basically wedge shaped, with a series of grilles cut into the rear for airflow. The majority of the machines had keyboards with soft tactile feedback and with rhomboid-shaped function keys across the top. The original 520ST design used an external floppy drive; the 1040ST-style case featured a built-in floppy drive. The power supply for the early 520ST was a large external brick while the 1040ST's was inside the machine.

Atari 520ST ports

Port connections

The ST featured a large number of ports mounted at the rear of the machine.

Atari ST mouse

Because of its bi-directional design, the Centronics printer port could be used for joystick input and several games made use of available adaptors that plugged into the printer socket, providing two additional 9-pin joystick ports.

Atari initially used single-sided disk drives that could store up to 360 KB. Later drives were double-sided versions that stored 720 KB. Due to the early sales of so many of the single-sided drives, almost all software would ship on two single-sided disks instead of a single double-sided one, for fear of alienating early adopters. ST magazines wishing to cater to the entire audience while still supplying a large amount of material on a single cover disc had to adopt innovative custom formats to work around this problem. Another sticking point was that while the Atari double-sided drive could read IBM-formatted disks, IBM PCs could not read Atari disks. This was a formatting issue that was later resolved by third-party software formatters and TOS upgrades (1.4 and higher).

STF and STFM models

Atari 1040ST

Atari later upgraded the basic design in 1986 with the 1040STF (also written STF). The machine was generally similar to the earlier 520ST, but moved the power supply and a double-sided floppy drive into the rear of the housing of the computer, as opposed to being external. This added to the size of the machine, but reduced cable clutter in the back. The 1040 shipped with 1 MB of RAM, and the same design was also used for the new 512 KB 520STFM, which replaced the earlier models in the market. The early 'STF' machines lacked the 'M' modulator that allowed a TV to be used and would only work with a monitor.

The 1040ST was the first personal computer shipped with a base RAM configuration of 1 MB, and when the list price was reduced to $999 in the U.S. it became the first computer to break the $1000/megabyte price barrier, and was featured on the cover of BYTE. However, the ST remained generally the same internally over the majority of its several-year lifespan. The choice of model numbers was inherited from the model numbers of the XE series of the Atari 8-bit family of computers. A limited number of 1040STFs shipped with a single-sided floppy drive.

Mega models

Initial sales were strong, especially in Europe where Atari sold 75% of its computers. Germany became Atari's strongest market, with small business users using them for desktop publishing and CAD.

To address this growing market segment, Atari came up with the ST1. First debuted at Comdex, 1986, it was received favorably. Renamed the Mega, this new machine included a detached high-quality keyboard, stronger case (to support the weight of a monitor), and internal bus expansion connector. The upcoming SLM804 laser printer would not come with a processor or memory, reducing costs. It would attach to the Mega through the ST DMA port and have the Mega computer render the pages. Initially equipped with 2 or 4 MB (a 1 MB version, the Mega 1 would later follow), the Mega machines would complement the Atari laser printer for a low-cost desktop publishing package which received acclaim and was featured on the cover of Computer Shopper magazine.

A custom blitter co-processor was to be included to speed the performance of some graphics operations on the screen, but due to delays it was eventually released on the Mega 2 and Mega 4 machines. Developers wanting to use it had to detect for it in their programs because it was not present on all machines. However, properly-written programs using the screen VDI commands could use the blitter seamlessly since GEM API was a higher-level interface to TOS.

Later models

For about the first four years, no major design changes in the ST platform took place as Atari focused on manufacturing problems and distribution.

ST enhanced

In late 1989, Atari released the STE (also written STE), a version of the ST with improvements to the multimedia hardware and operating system. The STE featured an increased colour palette of 4096 colours from the ST's 512 (though the maximum displayable palette of these without programming tricks was still limited to 16 in the lowest 320x200 resolution and even fewer in higher resolutions), Genlock support, and a graphics co-processor chip called Blitter which could quickly move large blocks of data (most particularly, graphics sprites) around in RAM. It also included a new 2-channels digital sound chip that could play 8-bit stereo samples in hardware at up to 50 kHz. Two enhanced joystick ports (EJP) were added (two normal joysticks could be plugged into each port with an adaptor), with the new connectors placed in more easily-accessed locations on the side of the case. The enhanced joystick ports were re-used in Atari's Jaguar console, and are compatible. RAM was now much more simply upgradable via SIMMs. Despite all of this, it still ran at 8 MHz, and the enhanced hardware was clearly designed to catch up with the Amiga.

The STE models initially had software and hardware conflicts resulting in some applications and games written for the ST line being unstable or even completely unusable, primarily caused by programming direct hardware calls which bypassed the operating system. Sometimes incompatibility could be solved by expanding the RAM. Furthermore, even having a joystick plugged in would sometimes cause strange behaviour with a few applications (such as First Word Plus).

Very little use was made of the extra features of the STE: STE-enhanced and STE-only software was rare, generally being limited to serious art, CAD or music applications, with very few games taking advantage of the hardware as it was found on so few machines. Quality did, however, seem to substitute for quantity, as the coders who took advantage of the new abilities used them to their fullest.

The last STE machine, the Mega STE, was an STE in a grey Atari TT case that ran at a switchable 16 MHz, dual-bus design (16-bit external, 32-bit internal), optional Motorola 68882 FPU, built-in 3½" floppy disk drive, VME expansion slot, a network port (very similar to that used by Apple's LocalTalk) and an optional built-in 3½" hard drive. It also shipped with TOS 2.00 (better support for hard drives, enhanced desktop interface, memory test, 1.44 MB floppy support, bug fixes). It was marketed as more affordable than a TT but more powerful than an ordinary ST.

The 68030 machines

In 1990, Atari released the high-end workstation-oriented TT (32 MHz, 68030-based TT030), continuing the nomenclature system with the 030 chip being a full 32 bit chip with thirty-two bit internal and external registers, hence TT. Originally planned with a 68020 CPU, the TT included improved graphics and more powerful support chips. The case was a new design with an integrated hard drive enclosure.

The final ST computer was the multimedia Falcon (also 68030-based, operating at 16 MHz, but with improved video modes and extensive custom chip provisions, particularly high-quality audio DSPs). Although 68030 microprocessor was capable of using 32-bit memory, the Falcon used a 16-bit bus which impacted performance, but also served to reduce its cost. In another cost-reduction measure, Atari shipped the Falcon in an inexpensive case much like that of the STE. After-market upgrade kits were available that allowed the Falcon to be put in a desktop or rack-mount case, with the keyboard separate.

Released in 1992, it was cancelled by Atari the following year. In Europe, C-Lab licenced the Falcon design from Atari and released the C-Lab Falcon Mk I (the same as Atari's Falcon except for some slight modifications to the audio circuitry), Mk II (as Mk I but with an internal 500 MB SCSI hard disk) and Mk X (as Mk II but in a desktop case).

Aftermath

In 1993, Atari cancelled development on the ST computers to focus on the Jaguar.

Following the exit of Atari from the computer market, Medusa Computer Systems manufactured some powerful 3rd-party Atari Falcon/TT-compatible machines that used 68040 and 68060 processors, based around multimedia (particularly audio, but also video), CAD and office uses.

Despite the lack of a hardware supplier, there is a small active community dedicated to keeping the ST platform alive. There have been advancements in the operating system, software emulators (for Windows, Mac & Linux), and some hardware developments. There are accelerator cards, such as the CT60 & CT63, which is a 68060 based accelerator card for the Falcon, and there is the Atari Coldfire Project, which aims at developing an Atari-clone based on the Coldfire processor. Milan Computer of Germany also made 68040 and 68060-based Atari clones that can run either Atari TOS 4.5 or Milan Computer's MultiOS operating system.

Software

Music / Sound

The ST was the first home computer with built-in MIDI ports, and there was plenty of MIDI-related software for use professionally in music studios, or by amateur enthusiasts. The popular Windows/Macintosh applications Cubase and Logic Pro originated on the Atari ST (the latter as Notator Logic, preceded by Notator and Notator-SL). Another popular and powerful ST music sequencer application, Dr. T's KCS, contained a "Multi-Program Environment" that allowed ST users to run other applications, such as the synthesizer patch editing software XoR (now known as Unisyn on the Macintosh), from within the sequencer application.[1] Even today some people (such as Fatboy Slim) are still using the Atari ST for composing music.

Music tracker software was popular on the ST, such as the TCB Tracker, aiding the production of quality music from the Yamaha synthesizer ('chiptunes').

An innovative music composition program that combined the sample playing abilities of a tracker with conventional music notation (which was usually only found in MIDI software) was called Quartet (after its 4-note polyphonic tracker, which displayed one monophonic stave at a time on colour screens).

Due to the ST having comparatively large amounts of memory for the time, sound sampling packages became a realistic proposition. The Microdeal Replay Professional product featured a sound sampler that cleverly used the ST cartridge port to read in parallel from the cartridge port from the ADC. For output of digital sound, it used the on-board frequency output, set it to 128 kHz (inaudible) and then modulated the amplitude of that.

Another program that had good success on the ST platform was MasterTracks Pro from Passport Designs, of Half Moon Bay, CA., that was first put out by Don Williams for the Macintosh. When the ST died, a PC version continued that one could port MIDI to using the generic .MID format. Passport was bought out by GVox, which continues the program along with the other Passport product, the notation program Encore.

In addition to the sound sampling functionalities, the availability of software packages with MIDI support for music composition and efficient sound analysis contributed to make the Atari ST a forerunner of later computer-based all-in-one studios.

The ST's low cost, built-in MIDI ports, and fast, low-latency response times made it a favorite with musicians:

Applications

Also popular on the ST was professional desktop publishing software, such as PageStream and Calamus; office tools such as word processors (WordPerfect, WordWriter ST and others), spreadsheets and database programs; and various CAD and CAM tools from amateur hobbyist to professional grade, all being largely targeted or even limited to high resolution monochrome-monitor owners.

Graphics programs such as NEOchrome, Degas & Degas Elite, Canvas, Deluxe Paint, and Cyber Paint (which author Jim Kent would later evolve into Autodesk Animator)[14] featured advanced features such as 3D design and animation. One paint program, Spectrum 512, used the ST's rapid palette switching ability to expand the maximum number of colors to be displayed on-screen at once to 512[15] (up to 46 in each scan line - the STE never had a Spectrum4096, but other more minor applications filled this speciality niche, one even going so far as to program the shifter chip to palette shift at a rate enabling a display of 19200 colours).

3D computer graphics applications (like Cyber Studio's CAD-3D, which author Tom Hudson would later develop into Autodesk 3D Studio[16][17]), brought 3D modelling, sculpting, scripting, and most important, computer animation (using delta-compression) to the desktop. Video capture and editing applications using special video capture 'dongles' connected using the cartridge port - low frame rate, mainly silent and monochrome, but progressing to sound and basic colour (in still frames) by the end of the machine's life. At the end, Spectrum 512 and CAD-3D teamed up to produce realistic 512 color textured 3D renderings, but processing was slow, and Atari's failure to deliver a machine with a math coprocessor had Hudson and Yost looking towards the PC as the future before a finished product could be delivered to the consumer.[18]

Software development

The Atari ST had a wide variety of languages and tools for development. 68000 assemblers (MadMac from Atari Corp, HiSoft's Devpac), Pascal (OSS Personal Pascal), Modula-2, C compilers (like Turbo C (Borland), Alcyon C, Lattice C, Megamax C, Mark Williams C, GNU C, Aztec C), LISP, Prolog, Logo and many others.

The initial development kit from Atari included a computer and manuals. At $5,000, this discouraged many from developing software for the ST. Later, the Atari Developer's Kit consisted of software and manuals (no hardware) for $300. Included with the kit were a resource kit, C compiler (first Alcyon C, then Mark Williams C), debugger, and 68000 assembler (plus the non-disclosure agreement).

The ST came bundled with a system disk that contained ST BASIC, the first BASIC for the ST. However, due to its poor performance, users favored other BASICs, such as GFA BASIC, FaST BASIC (notable for being one of the few programs to actually be supplied as a ROM cartridge instead of on disc) and the relatively famous STOS, which then inspired and led to the creation of AMOS on the Amiga, and powerful enough that it was used (with a compiler, opposed to its usual runtime interpreter) for the production of at least two commercial titles and an innumerable host of good quality shareware and public domain games.

Even novelty tools such as SEUCK were available.

Games

The ST enjoyed success in gaming due to low cost, fast performance and colorful graphics.

Notable individuals who developed games on the ST include Peter Molyneux, Doug Bell, Jeff Minter, Jez San, James Hutchby, Dimitri Koveos and David Braben. The first real-time 3D role-playing computer game, Dungeon Master, was first developed and released on the ST, and was the best-selling software ever produced for the platform. Simulation games like Falcon and Flight Simulator II made use of the enhanced graphics found in the ST machines, as did many arcade ports. One game, MIDI Maze used the midi ports to connect with other machines for interactive networked play. Games simultaneously released on the Amiga that had identical graphics and sound were often accused by computer game magazines of simply being ST ports.

See List of Atari ST games and Category:Atari ST games.

Utilities / Misc

Utility software was available to drive hardware add-ons such as video digitisers. Office Productivity and graphics software was also bundled with the ST (HyperPaint II by Dimitri Koveos, HyperDraw by David Farmborough, 3D-Calc spreadsheet by Frank Schoonjans, and several others commissioned by Bob Katz, later of Electronic Arts).

There was a thriving output of public domain and shareware software which was distributed by, in the days long before public internet access, public domain software libraries that advertised in magazines and on popular dial-up Bulletin Board Systems.

Remarkably, a modest core fanbase for the system, supporting a dwindling number of good quality print magazines, survived to the mid 90s and the birth of the modern, publicly accessible internet as we know it. Despite the limited graphics, memory, and temporary hard storage capabilities of the system, several email, FTP, telnet, IRC, and even full-blown graphical world wide web browser applications are available and usable on the ST.

Screenshots

GEM (Desktop) Neochrome 1st Word STZip
Atari/Digital Research (1985) Dave Staugas (1985) GST (1985) Vincent Pomey (1994)
Dungeon Master MIDI Maze Populous Xenon 2 Megablast
Mirrorsoft/FTL (1987) Hybrid Arts (1987) EA/Bullfrog (1989) Bitmap Brothers (1989)

More screenshots can be found on the Atari ST Games page.

Technical specifications

All STs were made up of both custom and commercial chips:

ST/STF/STM/STFM

As originally released in the 520ST:

Very early machines included the OS on a floppy disk due to it not being ready to be burned to ROM (Like the Amiga 1000 had) This early version of TOS was bootstrapped from a very small core boot ROM, but this was quickly replaced with (expanded capacity) ROM versions of TOS 1.0 when it was ready. (This change was also greatly welcomed as older ST machines with memory below 512 KB suffered, as GEM loaded its entire 192 KB code into RAM when booting the desktop). Having the OS loaded from disk was due to Atari (and Commodore) trying to rush the machines to market without ironing out all the bugs in the OS. Soon after this change, most production models became STFs, with an integrated single- (520STF/512 KB RAM) or double-sided (1040STF/1024 KB RAM) double density drive built-in, but no other changes. The next later models used an upgraded version of TOS - 1.02 (also known as TOS 1.2). Another early addition (after about 6 months) was an RF Modulator that allowed the machine to be hooked to a colour TV when run in its low or medium resolution (525/625 line 60/50 Hz interlace, even on RGB monitors) modes, greatly enhancing the machine's saleability and perceived value (no need to buy a prohibitively expensive, even if exceptionally crisp and clear, monitor). These models were known as the 520STM (or 520STM). Later F and FM models of the 520 had a built in double-sided disk drive instead of a single-sided one.

STE

As originally released in the 520STE/1040STE:

Models

A number of machines were released in the ST family. Here they are, in rough chronological order after the original 520ST:

Other models

There were also some unreleased prototypes: Falcon 040 (based on a Motorola 68040, new case and slots), ST Pad (A4 (Letter paper) sized pen-operated portable ST computer, handheld and with an unlit monochrome LCD screen derived from the ST Book, forerunner of modern tablet PCs), and the STylus (Apple Newton-style palmtop).

Peripherals

References

  1. "The Future of Atari Computing". STart Magazine (December 1989). Retrieved on 2006-06-23.
  2. AmigaOS, http://www.osdata.com/oses/amiga.htm, retrieved on 2007-10-22 
  3. Special To The New York Times (1985-07-10), "Atari Is Shipping 520 ST Computer", The New York Times, http://query.nytimes.com/gst/fullpage.html?res=9806E5DE1738F933A25754C0A963948260 
  4. GUI Timeline, http://media.arstechnica.com/images/gui/guitimeline.jpg 
  5. A.N.A.L.O.G. TCS #1 001 03/20/85 DRI SHIPS GEM - net.micro.atari - Google Groups
  6. Christina Erskine. "History of Computers: Part 2" p.39 CU Amiga, (September 1992)
  7. "TOP SECRET: Confidential Atari-Amiga Agreement". Atari Historical Society (November 1983). Retrieved on 2006-07-23.
  8. "Confidential Atari-Amiga Agreement" and "Afterthoughts: The Atari 1600XL Rumor"
  9. 9.0 9.1 Three Years with the ST
  10. Jay G. Miner - Visionary
  11. Atari - Project Sierra
  12. Powell, Jack (October 1985), "ST Product News: First ST review", ANTIC (magazine) 4 (6): 26, http://www.atarimagazines.com/v4n6/STproductnews.html 
  13. "The Atari Microbox". Atari Historical Society. Retrieved on 2007-05-28.
  14. The Antic Cyber Graphics Software and the Pre-History of Autodesk 3D Studio and Discreet 3ds max
  15. The Antic Cyber Graphics Software and the Pre-History of Autodesk 3D Studio and Discreet 3ds max
  16. Dinner with Tom Hudson
  17. The People of ANALOG
  18. http://www.asterius.com/atari/whatmight The Antic Cyber Graphics Software and the Pre-History of Autodesk 3D Studio and Discreet 3ds max
  19. Motorola Literature Distribution, Phonenix, AZ (1992). M68000 Family Programmer's Reference Manual. [Motorola]. pp. pg 1–1. ISBN 013-723289-6. 

See also

External links