Senses are the physiological methods of perception. The senses and their operation, classification, and theory are overlapping topics studied by a variety of fields, most notably neuroscience, cognitive psychology (or cognitive science), and philosophy of perception. The nervous system has a specific sensory system, or organ, dedicated to each sense.
Contents |
This is no firm agreement among neurologists as to the number of senses because of differing definitions of what constitutes a sense. One definition states that an exteroceptive sense is a faculty by which outside stimuli are perceived.[1] The traditional five senses are sight, hearing, touch, smell, taste: a classification attributed to Aristotle.[2] Humans also have at least six additional senses (a total of eleven including interoceptive senses) that include: nociception (pain), equilibrioception (balance), proprioception & kinesthesia (joint motion and acceleration), sense of time, thermoception (temperature differences), and in some a weak magnetoception (direction)[3].
One commonly recognized categorisation for human senses is as follows: chemoreception; photoreception; mechanoreception; and thermoception. Indeed, all human senses fit into one of these four categories.
Different senses also exist in other creatures, for example electroreception.
A broadly acceptable definition of a sense would be "a system that consists of a group of sensory cell types that responds to a specific physical phenomenon, and that corresponds to a particular group of regions within the brain where the signals are received and interpreted." Disputes about the number of senses typically arise around the classification of the various cell types and their mapping to regions of the brain.
Sight or vision is the ability of the brain and eye to detect electromagnetic waves within the visible range (light) interpreting the image as "sight." There is disagreement as to whether this constitutes one, two or three senses. Neuroanatomists generally regard it as two senses, given that different receptors are responsible for the perception of colour (the frequency of photons of light) and brightness (amplitude/intensity - number of photons of light). Some argue that stereopsis, the perception of depth, also constitutes a sense, but it is generally regarded as a cognitive (that is, post-sensory) function of brain to interpret sensory input and to derive new information. The inability to see is called blindness.
Hearing or audition is the sense of sound perception. Since sound is vibrations propagating through a medium such as air, the detection of these vibrations, that is the sense of the hearing, is a mechanical sense akin to a sense of touch, albeit a very specialized one. In humans, this perception is executed by tiny hair fibres in the inner ear which detect the motion of a membrane which vibrates in response to changes in the pressure exerted by atmospheric particles within a range of 20 to 22000 Hz, with substantial variation between individuals. Sound can also be detected as vibrations conducted through the body by tactition. Lower and higher frequencies than that can be heard are detected this way only. The inability to hear is called deafness.
Taste or gustation is one of the two main "chemical" senses. There are at least four types of tastes[4] that "buds" (receptors) on the tongue detect, and hence there are anatomists who argue that these constitute five or more different senses, given that each receptor conveys information to a slightly different region of the brain. The inability to taste is called ageusia.
The four well-known receptors detect sweet, salt, sour, and bitter, although the receptors for sweet and bitter have not been conclusively identified. A fifth receptor, for a sensation called umami, was first theorised in 1908 and its existence confirmed in 2000[5]. The umami receptor detects the amino acid glutamate, a flavour commonly found in meat and in artificial flavourings such as monosodium glutamate.
Note that taste is not the same as flavour; flavour includes the smell of a food as well as its taste.
Smell or olfaction is the other "chemical" sense. Unlike taste, there are hundreds of olfactory receptors, each binding to a particular molecular feature. Odour molecules possess a variety of features and thus excite specific receptors more or less strongly. This combination of excitatory signals from different receptors makes up what we perceive as the molecule's smell. In the brain, olfaction is processed by the olfactory system. Olfactory receptor neurons in the nose differ from most other neurons in that they die and regenerate on a regular basis. The inability to smell is called anosmia.
Touch, also called mechanoreception or somatic sensation, is the sense of pressure perception, generally in the skin. There are a variety of nerve endings that respond to variations in pressure (e.g., firm, brushing, and sustained). The inability to feel anything or almost anything is called anesthesia. Paresthesia is a sensation of tingling, pricking, or numbness of a person's skin with no apparent long term physical effect.
Balance, Equilibrioception, or vestibular sense, is the sense which allows an organism to sense body movement, direction, and acceleration, and to attain and maintain postural equilibrium and balance. The organ of equilibrioception is the vestibular labyrinthine system found in both of the inner ears. Technically this organ is responsible for two senses, angular momentum and linear acceleration (which also senses gravity), but they are known together as equilibrioception.
The vestibular nerve conducts information from the three semicircular canals, corresponding to the three spatial planes, the utricle, and the saccule. The ampulla, or base, portion of the three semicircular canals each contain a structure called a crista. These bend in response to angular momentum or spinning. The saccule and utricle, also called the "otolith organs", sense linear acceleration and thus gravity. Otoliths are small crystals of calcium carbonate that provide the inertia needed to detect changes in acceleration or gravity.
Thermoception is the sense of heat and the absence of heat (cold) by the skin and including internal skin passages. The thermoceptors in the skin are quite different from the homeostatic thermoceptors in the brain (hypothalamus) which provide feedback on internal body temperature.
Proprioception, the kinesthetic sense, provides the parietal cortex of the brain with information on the relative positions of the parts of the body. Neurologists test this sense by telling patients to close their eyes and touch the tip of a finger to their nose. Assuming proper proprioceptive function, at no time will the person lose awareness of where the hand actually is, even though it is not being detected by any of the other senses. Proprioception and touch are related in subtle ways, and their impairment results in surprising and deep deficits in perception and action. [6]
Nociception (physiological pain) signals near-damage or damage to tissue. The three types of pain receptors are cutaneous (skin), somatic (joints and bones) and visceral (body organs). It was believed that pain was simply the overloading of pressure receptors, but research in the first half of the 20th century indicated that pain is a distinct phenomenon that intertwines with all of the other senses, including touch. Pain was once considered an entirely subjective experience, but recent studies show that pain is registered in the anterior cingulate gyrus of the brain.[7]
An internal sense or interoception is "any sense that is normally stimulated from within the body."[8] These involve numerous sensory receptors in internal organs, such as stretch receptors that are neurologically linked to the brain.
Other living organisms have receptors to sense the world around them, including many of the senses listed above for humans. However, the mechanisms and capabilities vary widely.
Among non-human species, dogs have a much keener sense of smell than humans, although the mechanism is similar. Insects have olfactory receptors on their antennae.
Cats have the ability to see in the dark due to muscles surrounding their irises to contract and expand pupils as well as the tapetum lucidum, a reflective membrane that optimizes the image. Pitvipers, pythons and some boas have organs that allow them to detect infrared light, such that these snakes are able to sense the body heat of their prey. The common vampire bat may also have an infrared sensor on its nose.[9] It has been found that birds and some other animals are tetrachromats and have the ability to see in the ultraviolet down to 300 nanometers. Bees are also able to see in the ultraviolet.
Ctenophores have a balance receptor (a statocyst) that works very differently from the mammalian's semi-circular canals.
In addition, some animals have senses that humans do not, including the following:
|