Zonal polynomial

From Wikipedia, the free encyclopedia

In mathematics, a zonal polynomial is a multivariate symmetric homogeneous polynomial. The zonal polynomials form a basis of the space of symmetric polynomials.

The zonal polynomials are the α = 2 case of the C normalization of the Jack function.

[edit] References

  • Robb Muirhead, Aspects of Multivariate Statistical Theory, John Wiley & Sons, Inc., New York, 1984.
This algebra-related article is a stub. You can help Wikipedia by expanding it.