YWHAE
From Wikipedia, the free encyclopedia
Tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, epsilon polypeptide
|
|||||||||||
PDB rendering based on 2br9. | |||||||||||
Available structures: 2br9 | |||||||||||
Identifiers | |||||||||||
Symbol(s) | YWHAE; MDCR; MDS; KCIP-1; 14-3-3E; FLJ45465 | ||||||||||
External IDs | OMIM: 605066 MGI: 894689 HomoloGene: 38223 | ||||||||||
|
|||||||||||
RNA expression pattern | |||||||||||
Orthologs | |||||||||||
Human | Mouse | ||||||||||
Entrez | 7531 | 22627 | |||||||||
Ensembl | ENSG00000108953 | ENSMUSG00000020849 | |||||||||
Uniprot | P62258 | Q3V453 | |||||||||
Refseq | XM_001126863 (mRNA) XP_001126863 (protein) |
NM_009536 (mRNA) NP_033562 (protein) |
|||||||||
Location | Chr 17: 1.19 - 1.25 Mb | Chr 11: 75.55 - 75.58 Mb | |||||||||
Pubmed search | [1] | [2] |
Tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, epsilon polypeptide, also known as YWHAE, is a human gene.
This gene product belongs to the 14-3-3 family of proteins which mediate signal transduction by binding to phosphoserine-containing proteins. This highly conserved protein family is found in both plants and mammals, and this protein is 100% identical to the mouse ortholog. It interacts with CDC25 phosphatases, RAF1 and IRS1 proteins, suggesting its role in diverse biochemical activities related to signal transduction, such as cell division and regulation of insulin sensitivity. It has also been implicated in the pathogenesis of small cell lung cancer.[1]
[edit] See also
[edit] References
[edit] Further reading
- Kino T, Pavlakis GN (2004). "Partner molecules of accessory protein Vpr of the human immunodeficiency virus type 1.". DNA Cell Biol. 23 (4): 193–205. doi: . PMID 15142377.
- Kino T, Chrousos GP (2004). "Human immunodeficiency virus type-1 accessory protein Vpr: a causative agent of the AIDS-related insulin resistance/lipodystrophy syndrome?". Ann. N. Y. Acad. Sci. 1024: 153–67. doi: . PMID 15265780.
- Jones DH, Ley S, Aitken A (1995). "Isoforms of 14-3-3 protein can form homo- and heterodimers in vivo and in vitro: implications for function as adapter proteins.". FEBS Lett. 368 (1): 55–8. PMID 7615088.
- Conklin DS, Galaktionov K, Beach D (1995). "14-3-3 proteins associate with cdc25 phosphatases.". Proc. Natl. Acad. Sci. U.S.A. 92 (17): 7892–6. PMID 7644510.
- Jin DY, Lyu MS, Kozak CA, Jeang KT (1996). "Function of 14-3-3 proteins.". Nature 382 (6589): 308. doi: . PMID 8684458.
- Vincenz C, Dixit VM (1996). "14-3-3 proteins associate with A20 in an isoform-specific manner and function both as chaperone and adapter molecules.". J. Biol. Chem. 271 (33): 20029–34. PMID 8702721.
- Chong SS, Tanigami A, Roschke AV, Ledbetter DH (1997). "14-3-3 epsilon has no homology to LIS1 and lies telomeric to it on chromosome 17p13.3 outside the Miller-Dieker syndrome chromosome region.". Genome Res. 6 (8): 735–41. PMID 8858348.
- Craparo A, Freund R, Gustafson TA (1997). "14-3-3 (epsilon) interacts with the insulin-like growth factor I receptor and insulin receptor substrate I in a phosphoserine-dependent manner.". J. Biol. Chem. 272 (17): 11663–9. PMID 9111084.
- Han L, Wong D, Dhaka A, et al. (1997). "Protein binding and signaling properties of RIN1 suggest a unique effector function.". Proc. Natl. Acad. Sci. U.S.A. 94 (10): 4954–9. PMID 9144171.
- Ogihara T, Isobe T, Ichimura T, et al. (1997). "14-3-3 protein binds to insulin receptor substrate-1, one of the binding sites of which is in the phosphotyrosine binding domain.". J. Biol. Chem. 272 (40): 25267–74. PMID 9312143.
- Hsu SY, Kaipia A, Zhu L, Hsueh AJ (1997). "Interference of BAD (Bcl-xL/Bcl-2-associated death promoter)-induced apoptosis in mammalian cells by 14-3-3 isoforms and P11.". Mol. Endocrinol. 11 (12): 1858–67. PMID 9369453.
- Luk SC, Garcia-Barcelo M, Tsui SK, et al. (1997). "Assignment of the human 14-3-3 epsilon isoform (YWHAE) to human chromosome 17p13 by in situ hybridization.". Cytogenet. Cell Genet. 78 (2): 105–6. PMID 9371399.
- Nagata K, Puls A, Futter C, et al. (1998). "The MAP kinase kinase kinase MLK2 co-localizes with activated JNK along microtubules and associates with kinesin superfamily motor KIF3.". EMBO J. 17 (1): 149–58. doi: . PMID 9427749.
- Fanger GR, Widmann C, Porter AC, et al. (1998). "14-3-3 proteins interact with specific MEK kinases.". J. Biol. Chem. 273 (6): 3476–83. PMID 9452471.
- Ku NO, Liao J, Omary MB (1998). "Phosphorylation of human keratin 18 serine 33 regulates binding to 14-3-3 proteins.". EMBO J. 17 (7): 1892–906. doi: . PMID 9524113.
- Luk SC, Ngai SM, Tsui SK, et al. (1999). "In vivo and in vitro association of 14-3-3 epsilon isoform with calmodulin: implication for signal transduction and cell proliferation.". J. Cell. Biochem. 73 (1): 31–5. PMID 10088721.
- Ostrerova N, Petrucelli L, Farrer M, et al. (1999). "alpha-Synuclein shares physical and functional homology with 14-3-3 proteins.". J. Neurosci. 19 (14): 5782–91. PMID 10407019.
- Finlin BS, Andres DA (1999). "Phosphorylation-dependent association of the Ras-related GTP-binding protein Rem with 14-3-3 proteins.". Arch. Biochem. Biophys. 368 (2): 401–12. doi: . PMID 10441394.
- Dorner C, Ullrich A, Häring HU, Lammers R (1999). "The kinesin-like motor protein KIF1C occurs in intact cells as a dimer and associates with proteins of the 14-3-3 family.". J. Biol. Chem. 274 (47): 33654–60. PMID 10559254.
- Aoki H, Hayashi J, Moriyama M, et al. (2000). "Hepatitis C virus core protein interacts with 14-3-3 protein and activates the kinase Raf-1.". J. Virol. 74 (4): 1736–41. PMID 10644344.
|