Wilson quotient

From Wikipedia, the free encyclopedia

The Wilson quotient W(p) is defined as:

W(p) = \frac{(p-1)! + 1}{p}

If p is a prime number, the quotient is an integer by Wilson's theorem; moreover, if p is composite, the quotient is not an integer. If p divides W(p), it is called a Wilson prime. The integer values of W(p) are 1, 1, 5, 103, 329891, 36846277, 1230752346353, 336967037143579, ... (sequence A007619 in OEIS).

[edit] See also

[edit] External links

Languages