Well-founded semantics
From Wikipedia, the free encyclopedia
This article or section is in need of attention from an expert on the subject. Please help recruit one or improve this article yourself. See the talk page for details. Please consider using {{Expert-subject}} to associate this request with a WikiProject |
The well-founded semantics is a three-valued version of the stable semantics. That is, instead of only assigning propositions true or false, it also allows for a value representing ignorance. For example, if we know that
Specimen A is a moth if specimen A does not fly during daylight.
but we do not know whether or not specimen A flies during the day, the well-founded semantics would assign the proposition ``specimen A is a moth`` the value bottom which is neither true nor false.
The well-founded semantics is also a way of making safe inferences in the presence of contradictory data such as noisy data, or data acquired from different experts who may posit differing opinions. Many two-valued semantics simply won't consider such a problem state workable. The well-founded semantics, however, has a built-in mechanism to circumvent the presence of the contradictions and proceeds in the best way that it can. The fastest known algorithm to compute the WF-Semantics in general, is of quadratic complexity.
[edit] References
- A. Van Gelder, K.A. Ross and J.S. Schlipf. The Well-Founded Semantics for General Logic Programs. Journal of the ACM 38(3) pp. 620--650, 1991