Weakly compact cardinal
From Wikipedia, the free encyclopedia
In mathematics, a weakly compact cardinal is a certain kind of cardinal number introduced by Erdös & Tarski (1961); weakly compact cardinals are large cardinals, meaning that their existence can neither be proven nor disproven from the standard axioms of set theory.
Formally, a cardinal κ is defined to be weakly compact if it is uncountable and for every function f: [κ] 2 → {0, 1} there is a set of cardinality κ that is homogeneous for f. In this context, [κ] 2 means the set of 2-element subsets of κ, and a subset S of κ is homogeneous for f if and only if either all of [S]2 maps to 0 or all of it maps to 1.
The name "weakly compact" refers to the fact that if a cardinal is weakly compact then a certain related infinitary language satisfies a version of the compactness theorem; see below.
Weakly compact cardinals are Mahlo cardinals, and the set of Mahlo cardinals less than a given weakly compact cardinal is stationary.
[edit] Equivalent formulations
The following are equivalent for any uncountable cardinal κ:
- κ is weakly compact.
- for every λ<κ, natural number n ≥ 2, and function f: κn → λ, there is a set of cardinality κ that is homogeneous for f.
- κ is inaccessible and has the tree property, that is, every tree of height κ has either a level of size κ or a branch of size κ.
- Every linear order of cardinality κ has an ascending or a descending sequence of order type κ.
- κ is -indescribable.
- For every set S of cardinality κ of subsets of κ, there is a non-trivial κ-complete filter that decides S.
- κ is κ-unfoldable.
- The infinitary language Lκ,κ satisfies the weak compactness theorem.
- The infinitary language Lκ,ω satisfies the weak compactness theorem.
A language Lκ,κ is said to satisfy the weak compactness theorem if whenever Σ is a set of sentences of cardinality at most κ and every subset with less than κ elements has a model, then Σ has a model. Strongly compact cardinals are defined in a similar way without the restriction on the cardinality of the set of sentences.
[edit] See also
[edit] References
- Drake (1974), Set Theory: An Introduction to Large Cardinals, vol. 76, Studies in Logic and the Foundations of Mathematics, Elsevier Science Ltd, ISBN 0-444-10535-2
- Erdös, Paul & Tarski, Alfred (1961), “On some problems involving inaccessible cardinals”, Essays on the foundations of mathematics, Jerusalem: Magnes Press, Hebrew Univ., pp. 50--82, MR0167422, <http://www.renyi.hu/~p_erdos/>
- Kanamori, Akihiro (2003), The Higher Infinite : Large Cardinals in Set Theory from Their Beginnings (2nd ed.), Springer, ISBN 3-540-00384-3