Talk:Weak interaction
From Wikipedia, the free encyclopedia
Contents |
[edit] Some help here, please?
I'm wondering what use the authors of this page expect the page to be. The level of physics knowledge needed to comprehend this page is beyond that of anyone who would need to look up the subject of the page. I'd tackle trying to write a basic explanation, but I'm not a physicist, and would be afraid of making some basic errors. —Preceding unsigned comment added by 70.88.233.70 (talk) 17:21, 27 December 2007 (UTC)
[edit] Stellar fusion
The diproton article claims this is the force responsible for stellar fusion (limiting the rate). Why? It'd be nice to mention that here. --Andrew 05:25, Mar 31, 2005 (UTC)
Weak interactions occuour in stellar fusion because elements with more than one proton require a neutron to stop the protons from repelling each other with their + charges. Neutrons mutually attract the protons with strong force, and if weak interactions didn't take place, elements would be unable to fuse in stars.
[edit] One or a half force
The statement that the weak force is one of the four fundamental forces cannot be true at the same time as the statement that there is an electroweak force which the weak force is an aspect of. Could someone please clarify this? --Etxrge 20:44, 9 May 2005 (UTC)
- Quote from fundamental interaction:
- Traditionally, physicists have counted four interactions: gravity, electromagnetism, the weak nuclear force, and the strong nuclear force. Their magnitude and behavior vary greatly, as can be seen in the table above. Yet, it is strongly believed that three of these interactions are manifestations of a single, more fundamental, interaction. Electromagnetism and the weak nuclear forces have been shown to be two aspects of a single electroweak force. Somewhat more speculatively, the electroweak force and the strong nuclear interaction have been combined using grand unified theories.
-- Rmrfstar 04:52, 15 August 2005 (UTC)
[edit] Why?
This is because, under current conditions in the known universe, the weak force behaves as if it were a separate force to all others (strong, electromagnetic, gravity). However, under certain conditions, the weak force and the electromagnetic force behave in the same way. Because of this, physicists view the weak nuclear force as part of an 'electroweak' force; however it is useful when applied to ideas concerning the universe as it currently stands to consider the weak force as a separate force to the others.
[edit] Request for history
Can anyone provide a little history? Who first proposed the idea of this force and when? -- Mrnatural 02:51, 12 Jun, 2005 (UTC)
[edit] nuclear force vs interaction
Should not this article be titled, "Weak interaction" as Strong interaction is? -- Rmrfstar 7 July 2005 17:49 (UTC)
[edit] How many times weaker than strong nuclear force?
Fundamental interaction says weak nuclear force is 1025 times weaker than strong nuclear force. Weak nuclear force says it is just is 109 weaker. What is correct? Miraceti 13:34, 22 September 2005 (UTC)
- In the Fundamental interaction page it's how many times stronger it is than gravity, on this page it's stating how much weaker it is than strong nuclear force.
- The weak force is appparently 105 times weaker than the strong nuclear force. Reference: Pickering, A., Constructing Quarks (Edinburgh University Press, 1984). Any comments? —Preceding unsigned comment added by 144.82.106.37 (talk) 12:26, 24 April 2008 (UTC)
[edit] Attraction and/or Repulsion?
Does the weak nuclear force generate an attractive or repulsive force between two particles? The other 3 forces generate attractions and/or repulions, so shouldn't the weak nuclear force do the same thing, especially if it is supposed to be similar to the EM force?
- The answer, oddly enough, is no. The weak force the same as the others in a fundamental sense, in that force-carrying bosons are exchanged. The difference is that the weak force, unlike all the other forces, is mediated by very heavy particles. Thus whereas two electrons can exchange many, many photons and so produce what's effectively a continuous repulsive force, they exchange relatively few Z bosons because they're so heavy. (Really, the Z bosons do make a very small contribution to electron repulsion.) I'm not sure if that helps or not, but there's a try. If you have more questions, the best place to ask is Wikipedia:Reference desk/Science. -- SCZenz 03:34, 26 December 2005 (UTC)
[edit] Role in neutron decay?
Proton decay states that free neutrons decay in approximately 10 minutes due to weak interaction. Can someone add some details about this? Confuted 17:14, 26 March 2006 (UTC)
- The following discussion is an archived debate of the proposal. Please do not modify it. Subsequent comments should be made in a new section on the talk page. No further edits should be made to this section.
The result of the debate was move. —Nightstallion (?) 12:50, 3 March 2006 (UTC)
[edit] Move to Weak interaction
- because it's the modern name, rather than the historical one
- because people get confused between nuclear force, strong nuclear force and weak nuclear force
- because the strong interaction is already so named
-- Xerxes 18:39, 26 February 2006 (UTC)
[edit] Voting
- Support as per reasons above. David Kernow 03:03, 27 February 2006 (UTC)
- Agree with Xerxes. Conscious 06:41, 28 February 2006 (UTC)
- Of course. —Nightstallion (?) 12:50, 3 March 2006 (UTC)
- The above discussion is preserved as an archive of the debate. Please do not modify it. Subsequent comments should be made in a new section on this talk page. No further edits should be made to this section.
[edit] Attraction and/or Repulsion, pt. II
Which pairs of weakly interacting particles attract each other and which repel each other via weak interaction? Is there any charge associated with weak interaction (such as electric charge in electromagnetism, or mass in gravity) that could be used to determine whether there will be attraction or repulsion between the particles caused by weak interaction? --193.198.16.211 (talk) 19:05, 5 June 2008 (UTC)