Talk:Wave propagation

From Wikipedia, the free encyclopedia

WikiProject Physics This article is within the scope of WikiProject Physics, which collaborates on articles related to physics.
Stub This article has been rated as Stub-Class on the assessment scale.
??? This article has not yet received an importance rating within physics.

Help with this template This article has been rated but has no comments. If appropriate, please review the article and leave comments here to identify the strengths and weaknesses of the article and what work it will need.

This article has been automatically assessed as Stub-Class by WikiProject Physics because it uses a stub template.
  • If you agree with the assessment, please remove {{Physics}}'s auto=yes parameter from this talk page.
  • If you disagree with the assessment, please change it by editing the class parameter of the {{Physics}} template, removing {{Physics}}'s auto=yes parameter from this talk page, and removing the stub template from the article.

[edit] Technical Accuracy of Article - My Concerns

It is stated in this article that:

The universal wave equation is:

v=f\lambda=\frac{\lambda}{T}=\frac{\omega}{k}

With all the units beautifully clarified, however this is a dispersion relation; not a wave equation:

v=f\lambda=\frac{\omega}{2 \pi}\frac{2 \pi}{k}=\frac{\omega}{k}

where v is the phase velocity.

The wave equation depends on the physics of the system being modelled.

Also, we must not forget that in a more dense material, EM waves travel slower than in a complete vaccum. I think this article needs major re-working, possibly starting with how a wave propagates. I'm going to work on something to expand this stub also (derivations of wave propogations). Possible candidates being - sound waves in a medium, waves on a guitar string and co-axial cable waves.

--Ukberry (talk) 13:56, 28 April 2008 (UTC)