Image:Wave equation 1D fixed endpoints.gif

From Wikipedia, the free encyclopedia

Wikimedia Commons logo This is a file from the Wikimedia Commons. The description on its description page there is shown below.
Commons is a freely licensed media file repository. You can help.
Description

Illustration of en:Wave equation

Source

self-made, with en:Matlab

Date

01:27, 24 August 2007 (UTC)

Author

Oleg Alexandrov

Permission
(Reusing this image)

see below



Public domain I, the copyright holder of this work, hereby release it into the public domain. This applies worldwide.

In case this is not legally possible:
I grant anyone the right to use this work for any purpose, without any conditions, unless such conditions are required by law.


Afrikaans | Alemannisch | Aragonés | العربية | Asturianu | Български | Català | Česky | Cymraeg | Dansk | Deutsch | Eʋegbe | Ελληνικά | English | Español | Esperanto | Euskara | Estremeñu | فارسی | Français | Galego | 한국어 | हिन्दी | Hrvatski | Ido | Bahasa Indonesia | Íslenska | Italiano | עברית | Kurdî / كوردی | Latina | Lietuvių | Latviešu | Magyar | Македонски | Bahasa Melayu | Nederlands | ‪Norsk (bokmål)‬ | ‪Norsk (nynorsk)‬ | 日本語 | Polski | Português | Ripoarisch | Română | Русский | Shqip | Slovenčina | Slovenščina | Српски / Srpski | Svenska | ไทย | Tagalog | Türkçe | Українська | Tiếng Việt | Walon | ‪中文(简体)‬ | ‪中文(繁體)‬ | zh-yue-hant | +/-

[edit] MATLAB source code


% A wave travelling on a string with
% fixed endpoints

function main()

   % KSmrq's colors
   red    = [0.867 0.06 0.14];
   blue   = [0, 129, 205]/256;
   green  = [0, 200,  70]/256;
   yellow = [254, 194,   0]/256;
   white = 0.99*[1, 1, 1];
   
   % length of the string and the grid
   L = 5;
   N = 151;
   X=linspace(0, L, N);

   h = X(2)-X(1); % space grid size
   c = 0.5; % speed of the wave
   tau = 0.25*h/c; % time grid size
   
   K = 5; % steepness of the bump
   S = 0; % shift the wave
   f=inline('exp(-K*(x-S).^2)', 'x', 'S', 'K'); % a gaussian as an initial wave
   df=inline('-2*K*(x-S).*exp(-K*(x-S).^2)', 'x', 'S', 'K'); % derivative of f

   % wave at time 0 and tau
   U0 = 0*f(X, S, K);
   U1 = U0 - 2*tau*c*df(X, S, K);
   
   U = 0*U0; % current U

   Big=10000;
   Ut = zeros(Big, N);
   Ut(1, :) = U0;
   Ut(2, :) = U1;
   
   % hack to capture the first period of the wave
   min_k = 2*N; k_old = min_k; turn_on = 0; 

   for j=3:Big

      last_j = j;
      
      %  fixed end points
      U(1)=0; U(N)=0;
      
      % finite difference discretization in time
      for i=2:(N-1)
         U(i) = (c*tau/h)^2*(U1(i+1)-2*U1(i)+U1(i-1)) + 2*U1(i) - U0(i);
      end

      Ut(j, :) = U;
      
      % update info, for the next iteration
      U0 = U1; U1 = U;

      % hack to capture the first period of the wave
      k = find ( abs(U) == max(abs(U)) );
      k = k(1);

      if k > N/2
         turn_on = 1;
      end

      min_k = min(min_k, k_old);
      if k > min_k & min_k == k_old & turn_on == 1
         break;
      end
      k_old = k; 
      
   end

   % truncate to the first period
   last_j = last_j - 1;
   Ut = Ut(1:last_j, :);

  % shift the wave by a certain amount
   shift = floor(last_j/4);
   Vt=Ut;
   Ut((last_j-shift+1):last_j, :) = Vt(1:shift, :);
   Ut(1:(last_j-shift), :)        = Vt((shift+1):last_j, :);


   num_frames = 100;
   spacing=floor(last_j/num_frames)
   
   % plot the wave
   for j=1:(last_j-spacing+1)

      U = Ut(j, :);

      if rem(j, spacing) == 1

         figure(1); clf; hold on;
         axis equal; axis off; 
         lw = 3; % linewidth
         plot(X, U, 'color', red, 'linewidth', lw);
         
         % plot the ends of the string
         small_rad = 0.06;
         ball(0, 0, small_rad, red);
         ball(L, 0, small_rad, red);
         
         % size of the window
         ys = 1.1;
         axis([-small_rad, L+small_rad, -ys, ys]);
      
         % small markers to keep the bounding box fixed when saving to eps
         plot(-small_rad, ys, '*', 'color', white);
         plot(L+small_rad, -ys, '*', 'color', white);

         frame_no = floor(j/spacing)+1;
         frame=sprintf('Frame%d.eps', 1000+frame_no);
         disp(frame)
         saveas(gcf, frame, 'psc2');
         
      end
   end
   
function ball(x, y, radius, color) % draw a ball of given uniform color 
   Theta=0:0.1:2*pi;
   X=radius*cos(Theta)+x;
   Y=radius*sin(Theta)+y;
   H=fill(X, Y, color);
   set(H, 'EdgeColor', color);


% The gif image was creating with the command 
% convert -antialias -loop 10000  -delay 15 -compress LZW Fame10* Movie.gif


File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeDimensionsUserComment
current01:27, 24 August 2007274×121 (129 KB)Oleg Alexandrov ({{Information |Description=Illustration of en:Wave equation |Source=self-made, with en:Matlab |Date=~~~~~ |Author= Oleg Alexandrov }} {{PD-self}} Category:Waves Category:Partial differential equations [[Catego)
The following pages on the English Wikipedia link to this file (pages on other projects are not listed):