WARS2
From Wikipedia, the free encyclopedia
Tryptophanyl tRNA synthetase 2, mitochondrial
|
||||||||||||||
Identifiers | ||||||||||||||
Symbol(s) | WARS2; TrpRS | |||||||||||||
External IDs | OMIM: 604733 MGI: 1917810 HomoloGene: 5673 | |||||||||||||
|
||||||||||||||
RNA expression pattern | ||||||||||||||
Orthologs | ||||||||||||||
Human | Mouse | |||||||||||||
Entrez | 10352 | 70560 | ||||||||||||
Ensembl | ENSG00000116874 | ENSMUSG00000004233 | ||||||||||||
Uniprot | Q9UGM6 | Q8BFV8 | ||||||||||||
Refseq | NM_015836 (mRNA) NP_056651 (protein) |
NM_027462 (mRNA) NP_081738 (protein) |
||||||||||||
Location | Chr 1: 119.38 - 119.48 Mb | Chr 3: 99.27 - 99.35 Mb | ||||||||||||
Pubmed search | [1] | [2] |
Tryptophanyl tRNA synthetase 2, mitochondrial, also known as WARS2, is a human gene.[1]
Aminoacyl-tRNA synthetases catalyze the aminoacylation of tRNA by their cognate amino acid. Because of their central role in linking amino acids with nucleotide triplets contained in tRNAs, aminoacyl-tRNA synthetases are thought to be among the first proteins that appeared in evolution. Two forms of tryptophanyl-tRNA synthetase exist, a cytoplasmic form, named WARS, and a mitochondrial form, named WARS2. This gene encodes the mitochondrial tryptophanyl-tRNA synthetase. Two alternative transcripts encoding different isoforms have been described.[1]
[edit] References
[edit] Further reading
- Maruyama K, Sugano S (1994). "Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides.". Gene 138 (1-2): 171–4. PMID 8125298.
- Suzuki Y, Yoshitomo-Nakagawa K, Maruyama K, et al. (1997). "Construction and characterization of a full length-enriched and a 5'-end-enriched cDNA library.". Gene 200 (1-2): 149–56. PMID 9373149.
- Martinez-Dominguez MT, Justesen J, Kruse TA, Hansen LL (1999). "Assignment of the human mitochondrial tryptophanyl-tRNA synthetase (WARS2) to 1p13.3-->p13.1 by radiation hybrid mapping.". Cytogenet. Cell Genet. 83 (3-4): 249–50. PMID 10072595.
- Jorgensen R, Søgaard TM, Rossing AB, et al. (2000). "Identification and characterization of human mitochondrial tryptophanyl-tRNA synthetase.". J. Biol. Chem. 275 (22): 16820–6. PMID 10828066.
- Strausberg RL, Feingold EA, Grouse LH, et al. (2003). "Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences.". Proc. Natl. Acad. Sci. U.S.A. 99 (26): 16899–903. doi: . PMID 12477932.
- Liu J, Shue E, Ewalt KL, Schimmel P (2004). "A new gamma-interferon-inducible promoter and splice variants of an anti-angiogenic human tRNA synthetase.". Nucleic Acids Res. 32 (2): 719–27. doi: . PMID 14757836.
- Gerhard DS, Wagner L, Feingold EA, et al. (2004). "The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC).". Genome Res. 14 (10B): 2121–7. doi: . PMID 15489334.
- Oh JH, Yang JO, Hahn Y, et al. (2006). "Transcriptome analysis of human gastric cancer.". Mamm. Genome 16 (12): 942–54. doi: . PMID 16341674.
- Gregory SG, Barlow KF, McLay KE, et al. (2006). "The DNA sequence and biological annotation of human chromosome 1.". Nature 441 (7091): 315–21. doi: . PMID 16710414.
- Guo LT, Chen XL, Zhao BT, et al. (2007). "Human tryptophanyl-tRNA synthetase is switched to a tRNA-dependent mode for tryptophan activation by mutations at V85 and I311.". Nucleic Acids Res. 35 (17): 5934–43. doi: . PMID 17726052.