Vector quadruple product

From Wikipedia, the free encyclopedia

The vector quadruple product of four vectors A, B, C and D in three dimensions is defined as:

(\mathbf{A} \times \mathbf{B}) \cdot (\mathbf{C} \times \mathbf{D}) = (\mathbf{A} \cdot \mathbf{C})(\mathbf{B} \cdot \mathbf{D}) - (\mathbf{A} \cdot \mathbf{D})(\mathbf{B} \cdot \mathbf{C})

where the "×" and "·" symbols denote respectively the cross product and dot product.

[edit] See also


[edit] References

  • Lass, Harry (1950). Vector and Tensor Analysis. McGraw-Hill Book Company, Inc., p. 25. 

[edit] External links