Vector Laplacian/Proofs

From Wikipedia, the free encyclopedia

Main article: Vector Laplacian

The following is the proof that

\nabla ^2 \left( {\mathbf{u}} \right) = \nabla \left( {\nabla \cdot{\mathbf{u}}} \right) - \nabla  \times \left( {\nabla  \times {\mathbf{u}}} \right) = \left\langle {\nabla ^2 u_x ,\nabla ^2 u_y ,\nabla ^2 u_z } \right\rangle.

This is a proof in Cartesian coordinates. This identity is only valid for Cartesian coordinates; completing the calculations in other coordinate systems will result in other solutions.

Let 
{\mathbf{u}} = u\,{\mathbf{\hat e}}_{\mathbf{x}}  + v\,{\mathbf{\hat e}}_{\mathbf{y}}  + w\,{\mathbf{\hat e}}_{\mathbf{z}}  = \left\langle {u,v,w} \right\rangle
where u = u \left( {x,y,z} \right) , v = v \left( {x,y,z} \right) and w= w \left( {x,y,z} \right)



\begin{align}

\nabla ^2 \left( {\mathbf{u}} \right) &= \nabla \left( {\nabla  \cdot \left\langle {u,v,w} \right\rangle } \right) - \nabla  \times \left( {\nabla  \times \left\langle {u,v,w} \right\rangle } \right) \\

 &= \nabla \left( {\frac{{\partial u}}
{{\partial x}} + \frac{{\partial v}}
{{\partial y}} + \frac{{\partial w}}
{{\partial z}}} \right) - \nabla  \times \left| {\begin{array}{*{20}c}
   {{\mathbf{\hat e}}_{\mathbf{x}} } & {{\mathbf{\hat e}}_{\mathbf{y}} } & {{\mathbf{\hat e}}_{\mathbf{z}} }  \\
   {\frac{\partial }
{{\partial x}}} & {\frac{\partial }
{{\partial y}}} & {\frac{\partial }
{{\partial z}}}  \\
   u & v & w  \\

 \end{array} } \right| \\

 &= \left\langle {\frac{{\partial ^2 u}}
{{\partial x^2 }} + \frac{{\partial ^2 v}}
{{\partial x\partial y}} + \frac{{\partial ^2 w}}
{{\partial x\partial z}},\frac{{\partial ^2 v}}
{{\partial y^2 }} + \frac{{\partial ^2 u}}
{{\partial x\partial y}} + \frac{{\partial ^2 w}}
{{\partial y\partial z}},\frac{{\partial ^2 w}}
{{\partial z^2 }} + \frac{{\partial ^2 u}}
{{\partial x\partial z}} + \frac{{\partial ^2 v}}
{{\partial y\partial z}}} \right\rangle  - \nabla  \times \left\langle {\frac{{\partial w}}
{{\partial y}} - \frac{{\partial v}}
{{\partial z}},\frac{{\partial u}}
{{\partial z}} - \frac{{\partial w}}
{{\partial x}},\frac{{\partial v}}
{{\partial x}} - \frac{{\partial u}}
{{\partial y}}} \right\rangle  \\ 
 &= \left( {\frac{{\partial ^2 u}}
{{\partial x^2 }} + \frac{{\partial ^2 v}}
{{\partial x\partial y}} + \frac{{\partial ^2 w}}
{{\partial x\partial z}}} \right){\mathbf{\hat e}}_{\mathbf{x}}  + \left( {\frac{{\partial ^2 v}}
{{\partial y^2 }} + \frac{{\partial ^2 u}}
{{\partial x\partial y}} + \frac{{\partial ^2 w}}
{{\partial y\partial z}}} \right){\mathbf{\hat e}}_{\mathbf{y}}  + \left( {\frac{{\partial ^2 w}}
{{\partial z^2 }} + \frac{{\partial ^2 u}}
{{\partial x\partial z}} + \frac{{\partial ^2 v}}
{{\partial y\partial z}}} \right){\mathbf{\hat e}}_{\mathbf{z}}  - \left| {\begin{array}{*{20}c}
   {{\mathbf{\hat e}}_{\mathbf{x}} } & {{\mathbf{\hat e}}_{\mathbf{y}} } & {{\mathbf{\hat e}}_{\mathbf{z}} }  \\
   {\frac{\partial }
{{\partial x}}} & {\frac{\partial }
{{\partial y}}} & {\frac{\partial }
{{\partial z}}}  \\
   {\frac{{\partial w}}
{{\partial y}} - \frac{{\partial v}}
{{\partial z}}} & {\frac{{\partial u}}
{{\partial z}} - \frac{{\partial w}}
{{\partial x}}} & {\frac{{\partial v}}
{{\partial x}} - \frac{{\partial u}}
{{\partial y}}}  \\

 \end{array} } \right| \\ 
  &= \left( {\begin{array}{*{20}c}
   {\frac{{\partial ^2 u}}
{{\partial x^2 }} + \frac{{\partial ^2 v}}
{{\partial x\partial y}} + \frac{{\partial ^2 w}}
{{\partial x\partial z}}}  \\
   {\frac{{\partial ^2 v}}
{{\partial y^2 }} + \frac{{\partial ^2 u}}
{{\partial x\partial y}} + \frac{{\partial ^2 w}}
{{\partial y\partial z}}}  \\
   {\frac{{\partial ^2 w}}
{{\partial z^2 }} + \frac{{\partial ^2 u}}
{{\partial x\partial z}} + \frac{{\partial ^2 v}}
{{\partial y\partial z}}}  \\

 \end{array} } \right)\left\{ {{\mathbf{\hat e}}_{\mathbf{x}} ,{\mathbf{\hat e}}_{\mathbf{y}} ,{\mathbf{\hat e}}_{\mathbf{z}} } \right\} + \left( {\begin{array}{*{20}c}
   { - \frac{{\partial ^2 v}}
{{\partial x\partial y}} + \frac{{\partial ^2 u}}
{{\partial y^2 }} + \frac{{\partial ^2 u}}
{{\partial z^2 }} - \frac{{\partial ^2 w}}
{{\partial x\partial z}}}  \\
   {\frac{{\partial ^2 v}}
{{\partial x^2 }} - \frac{{\partial ^2 u}}
{{\partial x\partial y}} - \frac{{\partial ^2 w}}
{{\partial y\partial z}} + \frac{{\partial ^2 v}}
{{\partial z^2 }}}  \\
   { - \frac{{\partial ^2 u}}
{{\partial x\partial z}} + \frac{{\partial ^2 w}}
{{\partial x^2 }} + \frac{{\partial ^2 w}}
{{\partial y^2 }} - \frac{{\partial ^2 v}}
{{\partial y\partial z}}}  \\

 \end{array} } \right)\,\left\{ {{\mathbf{\hat e}}_{\mathbf{x}} ,\,{\mathbf{\hat e}}_{\mathbf{y}} ,\,{\mathbf{\hat e}}_{\mathbf{z}} } \right\} \\ 
 &= \left( {\begin{array}{*{20}c}
   {\frac{{\partial ^2 u}}
{{\partial x^2 }} + \frac{{\partial ^2 u}}
{{\partial y^2 }} + \frac{{\partial ^2 u}}
{{\partial z^2 }}}  \\
   {\frac{{\partial ^2 v}}
{{\partial x^2 }} + \frac{{\partial ^2 v}}
{{\partial z^2 }} + \frac{{\partial ^2 v}}
{{\partial y^2 }}}  \\
   {\frac{{\partial ^2 w}}
{{\partial x^2 }} + \frac{{\partial ^2 w}}
{{\partial y^2 }} + \frac{{\partial ^2 w}}
{{\partial z^2 }}}  \\

 \end{array} } \right)\left\{ {{\mathbf{\hat e}}_{\mathbf{x}} ,{\mathbf{\hat e}}_{\mathbf{y}} ,{\mathbf{\hat e}}_{\mathbf{z}} } \right\} \\ 


  &= \nabla ^2 u\,{\mathbf{\hat e}}_{\mathbf{x}}  + \nabla ^2 v\,{\mathbf{\hat e}}_{\mathbf{y}}  + \nabla ^2 w\,{\mathbf{\hat e}}_{\mathbf{z}} \\ 
\end{align}