Template:Uniform polyhedra db
From Wikipedia, the free encyclopedia
{{{{{1}}}|{{{2}}}|
|OhO-name=Octahemioctahedron| |OhO-image=Octahemioctahedron.png| |OhO-vfigimage=Octahemioctahedron vertfig.png|OhO-vfig=3.6.3/2.6| |OhO-Wythoff=3/23 | 3| |OhO-W=68|OhO-U=03|OhO-K=08|OhO-C=37| |OhO-V=12|OhO-E=24|OhO-F=12|OhO-Fdetail=8{3}+4{6}| |OhO-chi=0|OhO-group=Oh| |OhO-B=Oho|OhO-dual=Octahemioctacron |OhO-dimage=Wideblank.png
|ThH-name=Tetrahemihexahedron| |ThH-image=Tetrahemihexahedron.png| |ThH-vfigimage=Tetrahemihexahedron vertfig.png| |ThH-vfig=3.4.3/2.4| |ThH-Wythoff=3/23 | 2| |ThH-W=67|ThH-U=04|ThH-K=09|ThH-C=36| |ThH-V=6|ThH-E=12|ThH-F=7|ThH-Fdetail=4{3}+3{4}| |ThH-chi=1|ThH-group=Td| |ThH-B=Thah|ThH-dual=Tetrahemihexacron |ThH-dimage=Wideblank.png
|lCCO-name=Small cubicuboctahedron| |lCCO-image=Small cubicuboctahedron.png| |lCCO-vfigimage=Small cubicuboctahedron vertfig.png|lCCO-vfig=4.8.3/2.8| |lCCO-Wythoff=3/24 | 4| |lCCO-W=69|lCCO-U=13|lCCO-K=18|lCCO-C=38| |lCCO-V=24|lCCO-E=48|lCCO-F=20|lCCO-Fdetail=8{3}+6{4}+6{8}| |lCCO-chi=-4|lCCO-group=Oh| |lCCO-B=Socco|lCCO-dual=Small hexacronic icositetrahedron |lCCO-dimage=DU13 small hexacronic icositetrahedron.png
|gCCO-name=Great cubicuboctahedron| |gCCO-image=Great cubicuboctahedron.png| |gCCO-vfigimage=Great cubicuboctahedron vertfig.png|gCCO-vfig=3.8/3.4.8/3| |gCCO-Wythoff=3 4 | 4/3| |gCCO-W=77|gCCO-U=14|gCCO-K=19|gCCO-C=50| |gCCO-V=24|gCCO-E=48|gCCO-F=20| |gCCO-Fdetail=8{3}+6{4}+6{8/3}| |gCCO-chi=-4|gCCO-group=Oh| |gCCO-B=Gocco|gCCO-dual=Great hexacronic icositetrahedron |gCCO-dimage=DU14 great hexacronic icositetrahedron.png
|ChO-name=Cubohemioctahedron| |ChO-image=Cubohemioctahedron.png| |ChO-vfigimage=Cubohemioctahedron vertfig.png|ChO-vfig=4.6.4/3.6| |ChO-Wythoff=4/34 | 3| |ChO-W=78|ChO-U=15|ChO-K=20|ChO-C=51| |ChO-V=12|ChO-E=24|ChO-F=10|ChO-Fdetail=6{4}+4{6}| |ChO-chi=-2|ChO-group=Oh| |ChO-B=Cho|ChO-dual=Hexahemioctacron |ChO-dimage=Wideblank.png
|ctCO-name=Cubitruncated cuboctahedron| |ctCO-image=Cubitruncated cuboctahedron.png| |ctCO-vfigimage=Cubitruncated cuboctahedron vertfig.png|ctCO-vfig=6.8.8/3| |ctCO-altname1=Cuboctatruncated cuboctahedron| |ctCO-Wythoff=3 44/3 | | |ctCO-W=79|ctCO-U=16|ctCO-K=21|ctCO-C=52| |ctCO-V=48|ctCO-E=72|ctCO-F=20|ctCO-Fdetail=8{6}+6{8}+6{8/3}| |ctCO-chi=-4|ctCO-group=Oh| |ctCO-B=Cotco|ctCO-dual=Tetradyakis hexahedron |ctCO-dimage=DU16 tetradyakishexahedron.png
|ugrCO-name=Uniform great rhombicuboctahedron| |ugrCO-image=Uniform great rhombicuboctahedron.png| |ugrCO-vfigimage=Uniform great rhombicuboctahedron vertfig.png|ugrCO-vfig=4.4.4.3/2| |ugrCO-altname1=Quasirhombicuboctahedron| |ugrCO-Wythoff=3/24 | 2| |ugrCO-W=85|ugrCO-U=17|ugrCO-K=22|ugrCO-C=59| |ugrCO-V=24|ugrCO-E=48|ugrCO-F=26|ugrCO-Fdetail=8{3}+(6+12){4}| |ugrCO-chi=2|ugrCO-group=Oh| |ugrCO-B=Querco|ugrCO-dual=Great deltoidal icositetrahedron |ugrCO-dimage=DU17 great strombic icositetrahedron.png
|lrH-name=Small rhombihexahedron| |lrH-image=Small rhombihexahedron.png| |lrH-vfigimage=Small rhombihexahedron vertfig.png|lrH-vfig=4.8.4/3.8| |lrH-Wythoff=2 4 (3/2 4/2) || |lrH-W=86|lrH-U=18|lrH-K=23|lrH-C=60| |lrH-V=24|lrH-E=48|lrH-F=18|lrH-Fdetail=12{4}+6{8}| |lrH-chi=-6|lrH-group=Oh| |lrH-B=Sroh|lrH-dual=Small rhombihexacron |lrH-dimage=DU18 small rhombihexacron.png
|stH-name=Stellated truncated hexahedron| |stH-image=Stellated truncated hexahedron.png| |stH-vfigimage=Stellated truncated hexahedron vertfig.png|stH-vfig=3.8/3.8/3| |stH-altname1=Quasitruncated hexahedron| |stH-altname2=stellatruncated cube| |stH-Wythoff=2 3 | 4/3| |stH-W=92|stH-U=19|stH-K=24|stH-C=66| |stH-V=24|stH-E=36|stH-F=14|stH-Fdetail=8{3}+6{8/3}| |stH-chi=2|stH-group=Oh| |stH-B=Quith|stH-dual=Great triakis octahedron |stH-dimage=DU19 great triakisoctahedron.png
|gtCO-name=Great truncated cuboctahedron| |gtCO-image=Great truncated cuboctahedron.png| |gtCO-vfigimage=Great truncated cuboctahedron vertfig.png|gtCO-vfig=4.6.8/3| |gtCO-altname1=Quasitruncated cuboctahedron| |gtCO-Wythoff=2 34/3 | | |gtCO-W=93|gtCO-U=20|gtCO-K=25|gtCO-C=67| |gtCO-V=48|gtCO-E=72|gtCO-F=26|gtCO-Fdetail=12{4}+8{6}+6{8/3}| |gtCO-chi=2|gtCO-group=Oh| |gtCO-B=Quitco|gtCO-dual=Great disdyakis dodecahedron |gtCO-dimage=DU20 great disdyakisdodecahedron.png
|grH-name=Great rhombihexahedron| |grH-image=Great rhombihexahedron.png| |grH-vfigimage=Great rhombihexahedron vertfig.png|grH-vfig=4.8/3.4/3.8/5| |grH-Wythoff=2 4/3 (3/2 4/2) || |grH-W=103|grH-U=21|grH-K=26|grH-C=82| |grH-V=24|grH-E=48|grH-F=18|grH-Fdetail=12{4}+6{8/3}| |grH-chi=-6|grH-group=Oh| |grH-B=Groh|grH-dual=Great rhombihexacron |grH-dimage=DU21 great rhombihexacron.png
|ldID-name=Small ditrigonal icosidodecahedron| |ldID-image=Small ditrigonal icosidodecahedron.png| |ldID-vfigimage=Small ditrigonal icosidodecahedron vertfig.png|ldID-vfig=(3.5/2)3| |ldID-Wythoff=3 | 5/23| |ldID-W=70|ldID-U=30|ldID-K=35|ldID-C=39| |ldID-V=20|ldID-E=60|ldID-F=32|ldID-Fdetail=20{3}+12{5/2}| |ldID-chi=-8|ldID-group=Ih| |ldID-B=Sidtid|ldID-dual=Small triambic icosahedron |ldID-dimage=DU30 small triambic icosahedron.png
|lIID-name=Small icosicosidodecahedron| |lIID-image=Small icosicosidodecahedron.png| |lIID-vfigimage=Small icosicosidodecahedron vertfig.png| |lIID-vfig=6.5/2.6.3| |lIID-Wythoff=5/2 3 | 3| |lIID-W=71|lIID-U=31|lIID-K=36|lIID-C=40| |lIID-V=60|lIID-E=120|lIID-F=52| |lIID-Fdetail=20{3}+12{5/2}+20{6}| |lIID-chi=-8|lIID-group=Ih| |lIID-B=Siid|lIID-dual=Small icosacronic hexacontahedron |lIID-dimage=DU31 small icosacronic hexecontahedron.png
|Seside-name=Small snub icosicosidodecahedron| |Seside-image=Small snub icosicosidodecahedron.png| |Seside-vfigimage=Small snub icosicosidodecahedron vertfig.png| |Seside-solid=S+| |Seside-Wythoff=|5/2 3 3| |Seside-vfig=35.5/2| |Seside-B=Seside|Seside-group=Ih| |Seside-W=110|Seside-U=32|Seside-K=37|Seside-C=41| |Seside-V=60|Seside-E=180|Seside-F=112|Seside-chi=-8|Seside-Fdetail=(40+60){3}+12{5/2}| |Seside-dual=Small hexagonal hexecontahedron |Seside-dimage=DU32 small hexagonal hexecontahedron.png
|lDID-name=Small dodecicosidodecahedron| |lDID-image=Small dodecicosidodecahedron.png| |lDID-vfigimage=Small dodecicosidodecahedron vertfig.png|lDID-vfig=5.10.3/2.10| |lDID-Wythoff=3/25 | 5| |lDID-W=72|lDID-U=33|lDID-K=38|lDID-C=42| |lDID-V=60|lDID-E=120|lDID-F=44|lDID-Fdetail=20{3}+12{5}+12{10}| |lDID-chi=-16|lDID-group=Ih| |lDID-B=Saddid|lDID-dual=Small dodecacronic hexecontahedron |lDID-dimage=DU33 small dodecacronic hexecontahedron.png
|DD-name=Dodecadodecahedron| |DD-image=Dodecadodecahedron.png| |DD-vfigimage=Dodecadodecahedron vertfig.png|DD-vfig=5.5/2.5.5/2| |DD-Wythoff=2 | 5 5/2| |DD-W=73|DD-U=36|DD-K=41|DD-C=45| |DD-V=30|DD-E=60|DD-F=24|DD-Fdetail=12{5}+12{5/2}| |DD-chi=-6|DD-group=Ih| |DD-B=Did|DD-dual=Medial rhombic triacontahedron |DD-dimage=DU36 medial rhombic triacontahedron.png
|tgD-name=Truncated great dodecahedron| |tgD-image=Great truncated dodecahedron.png| |tgD-vfigimage=Truncated great dodecahedron vertfig.png|tgD-vfig=10.10.5/2| |tgD-Wythoff=25/2 | 5| |tgD-W=75|tgD-U=37|tgD-K=42|tgD-C=47| |tgD-V=60|tgD-E=90|tgD-F=24|tgD-Fdetail=12{5/2}+12{10}| |tgD-chi=-6|tgD-group=Ih| |tgD-B=Tigid|tgD-dual=Small stellapentakis dodecahedron |tgD-dimage=DU37 small stellapentakisdodecahedron.png
|rDD-name=Rhombidodecadodecahedron| |rDD-image=Rhombidodecadodecahedron.png| |rDD-vfigimage=Rhombidodecadodecahedron vertfig.png| |rDD-vfig=4.5/2.4.5| |rDD-Wythoff=5/2 5 | 2| |rDD-W=76|rDD-U=38|rDD-K=43|rDD-C=48| |rDD-V=60|rDD-E=120|rDD-F=54| |rDD-Fdetail=30{4}+12{5}+12{5/2}| |rDD-chi=-6|rDD-group=Ih| |rDD-B=Raded|rDD-dual=Medial deltoidal hexecontahedron |rDD-dimage=DU38 medial trapezoidal hexecontahedron.png
|lrD-name=Small rhombidodecahedron| |lrD-image=Small rhombidodecahedron.png| |lrD-vfigimage=Small rhombidodecahedron vertfig.png|lrD-vfig=4.10.4/3.10/9| |lrD-Wythoff=2 5 (3/2 5/2) | | |lrD-W=74|lrD-U=39|lrD-K=44|lrD-C=46| |lrD-V=60|lrD-E=120|lrD-F=42|lrD-Fdetail=30{4}+12{10}| |lrD-chi=-18|lrD-group=Ih| |lrD-B=Sird|lrD-dual=Small rhombidodecacron |lrD-dimage=DU39 small rhombidodecacron.png
|Siddid-name=Snub dodecadodecahedron| |Siddid-image=Snub dodecadodecahedron.png| |Siddid-vfigimage=Snub dodecadodecahedron vertfig.png| |Siddid-solid=S+| |Siddid-Wythoff=|2 5/2 5| |Siddid-vfig=3.3.5/2.3.5| |Siddid-B=Siddid|Siddid-group=I |Siddid-W=111|Siddid-U=40|Siddid-K=45|Siddid-C=49| |Siddid-V=60|Siddid-E=150|Siddid-F=84|Siddid-chi=-6|Siddid-Fdetail=60{3}+12{5}+12{5/2}| |Siddid-dual=Medial pentagonal hexecontahedron |Siddid-dimage=DU40 medial pentagonal hexecontahedron.png
|dDD-name=Ditrigonal dodecadodecahedron| |dDD-image=Ditrigonal dodecadodecahedron.png| |dDD-vfigimage=Ditrigonal dodecadodecahedron vertfig.png|dDD-vfig=(5.5/3)3| |dDD-Wythoff=3 | 5/35| |dDD-W=80|dDD-U=41|dDD-K=46|dDD-C=53| |dDD-V=20|dDD-E=60|dDD-F=24|dDD-Fdetail=12{5}+12{5/2}| |dDD-chi=-16|dDD-group=Ih| |dDD-B=Ditdid|dDD-dual=Medial triambic icosahedron |dDD-dimage=DU41 medial triambic icosahedron.png
|gdDID-name=Great ditrigonal dodecicosidodecahedron| |gdDID-image=Great ditrigonal dodecicosidodecahedron.png| |gdDID-vfigimage=Great ditrigonal dodecicosidodecahedron vertfig.png| |gdDID-vfig=3.10/3.5.10/3| |gdDID-Wythoff=3 5 | 5/3| |gdDID-W=81|gdDID-U=42|gdDID-K=47|gdDID-C=54| |gdDID-V=60|gdDID-E=120|gdDID-F=44| |gdDID-Fdetail=20{3}+12{5}+12{10/3}| |gdDID-chi=-16|gdDID-group=Ih| |gdDID-B=Gidditdid|gdDID-dual=Great ditrigonal dodecacronic hexecontahedron |gdDID-dimage=DU42 great ditrigonal dodecacronic hexecontahedron.png
|ldDID-name=Small ditrigonal dodecicosidodecahedron| |ldDID-image=Small ditrigonal dodecicosidodecahedron.png| |ldDID-vfigimage=Small ditrigonal dodecicosidodecahedron vertfig.png|ldDID-vfig=3.10.5/3.10| |ldDID-Wythoff=5/33 | 5| |ldDID-W=82|ldDID-U=43|ldDID-K=48|ldDID-C=55| |ldDID-V=60|ldDID-E=120|ldDID-F=44|ldDID-Fdetail=20{3}+12{5/2}+12{10}| |ldDID-chi=-16|ldDID-group=Ih| |ldDID-B=Sidditdid|ldDID-dual=Small ditrigonal dodecacronic hexecontahedron |ldDID-dimage=DU43 Small ditrigonal dodecacronic hexecontahedron.png
|IDD-name=Icosidodecadodecahedron| |IDD-image=Icosidodecadodecahedron.png| |IDD-vfigimage=Icosidodecadodecahedron vertfig.png|IDD-vfig=5.6.5/3.6| |IDD-Wythoff=5/35 | 3| |IDD-W=83|IDD-U=44|IDD-K=49|IDD-C=56| |IDD-V=60|IDD-E=120|IDD-F=44|IDD-Fdetail=12{5}+12{5/2}+20{6}| |IDD-chi=-16|IDD-group=Ih| |IDD-B=Ided|IDD-dual=Medial icosacronic hexecontahedron |IDD-dimage=DU44 medial icosacronic hexecontahedron.png
|itDD-name=Icositruncated dodecadodecahedron| |itDD-image=Icositruncated dodecadodecahedron.png| |itDD-vfigimage=Icositruncated dodecadodecahedron vertfig.png|itDD-vfig=6.10.10/3| |itDD-altname1=Icosidodecatruncated icosidodecahedron| |itDD-Wythoff=3 55/3 | | |itDD-W=84|itDD-U=45|itDD-K=50|itDD-C=57| |itDD-V=120|itDD-E=180|itDD-F=44|itDD-Fdetail=20{6}+12{10}+12{10/3}| |itDD-chi=-16|itDD-group=Ih| |itDD-B=Idtid|itDD-dual=Tridyakis icosahedron |itDD-dimage=DU45 tridyakisicosahedron.png
|Sided-name=Snub icosidodecadodecahedron| |Sided-image=Snub icosidodecadodecahedron.png| |Sided-vfigimage=Snub icosidodecadodecahedron vertfig.png| |Sided-solid=S+| |Sided-Wythoff=|5/3 3 5| |Sided-vfig=3.3.3.5.3.5/3| |Sided-B=Sided|Sided-group=I |Sided-W=112|Sided-U=46|Sided-K=51|Sided-C=58| |Sided-V=60|Sided-E=180|Sided-F=104|Sided-chi=-16|Sided-Fdetail=(20+60){3}+12{5}+12{5/2}| |Sided-dual=Medial hexagonal hexecontahedron |Sided-dimage=DU46 medial hexagonal hexecontahedron.png
|gdID-name=Great ditrigonal icosidodecahedron| |gdID-image=Great ditrigonal icosidodecahedron.png| |gdID-vfigimage=Great ditrigonal icosidodecahedron vertfig.png|gdID-vfig=((3.5)3)/2| |gdID-Wythoff=3/2 | 3 5| |gdID-W=87|gdID-U=47|gdID-K=52|gdID-C=61| |gdID-V=20|gdID-E=60|gdID-F=32|gdID-Fdetail=20{3}+12{5}| |gdID-chi=-8|gdID-group=Ih| |gdID-B=Gidtid|gdID-dual=Great triambic icosahedron |gdID-dimage=DU47 great triambic icosahedron.png
|gIID-name=Great icosicosidodecahedron| |gIID-image=Great icosicosidodecahedron.png| |gIID-vfigimage=Great icosicosidodecahedron vertfig.png|gIID-vfig=5.6.3/2.6| |gIID-Wythoff=3/25 | 3| |gIID-W=88|gIID-U=48|gIID-K=53|gIID-C=62| |gIID-V=60|gIID-E=120|gIID-F=52|gIID-Fdetail=20{3}+12{5}+20{6}| |gIID-chi=-8|gIID-group=Ih| |gIID-B=Giid|gIID-dual=Great icosacronic hexecontahedron |gIID-dimage=DU48 great icosacronic hexecontahedron.png
|lIhD-name=Small icosihemidodecahedron| |lIhD-image=Small icosihemidodecahedron.png| |lIhD-vfigimage=Small icosihemidodecahedron vertfig.png|lIhD-vfig=3.10.3/2.10| |lIhD-Wythoff=3/23 | 5| |lIhD-W=89|lIhD-U=49|lIhD-K=54|lIhD-C=63| |lIhD-V=30|lIhD-E=60|lIhD-F=26|lIhD-Fdetail=20{3}+6{10}| |lIhD-chi=-4|lIhD-group=Ih| |lIhD-B=Seihid|lIhD-dual=Small icosihemidodecacron |lIhD-dimage=Wideblank.png
|lDI-name=Small dodecicosahedron| |lDI-image=Small dodecicosahedron.png| |lDI-vfigimage=Small dodecicosahedron vertfig.png|lDI-vfig=6.10.6/5.10/9| |lDI-Wythoff=3 5 (3/2 5/4) | | |lDI-W=90|lDI-U=50|lDI-K=55|lDI-C=64| |lDI-V=60|lDI-E=120|lDI-F=32|lDI-Fdetail=20{6}+12{10}| |lDI-chi=-28|lDI-group=Ih| |lDI-B=Siddy|lDI-dual=Small dodecicosacron |lDI-dimage=DU50 small dodecicosacron.png
|lDhD-name=Small dodecahemidodecahedron| |lDhD-image=Small dodecahemidodecahedron.png| |lDhD-vfigimage=Small dodecahemidodecahedron vertfig.png|lDhD-vfig=5.10.5/4.10| |lDhD-Wythoff=5/45 | 5| |lDhD-W=91|lDhD-U=51|lDhD-K=56|lDhD-C=65| |lDhD-V=30|lDhD-E=60|lDhD-F=18|lDhD-Fdetail=12{5}+6{10}| |lDhD-chi=-12|lDhD-group=Ih| |lDhD-B=Sidhid|lDhD-dual=Small dodecahemidodecacron |lDhD-dimage=Wideblank.png
|gID-name=Great icosidodecahedron| |gID-image=Great icosidodecahedron.png| |gID-vfigimage=Great icosidodecahedron vertfig.png|gID-vfig=3.5/2.3.5/2| |gID-Wythoff=2 | 3 5/2| |gID-W=94|gID-U=54|gID-K=59|gID-C=70| |gID-V=30|gID-E=60|gID-F=32|gID-Fdetail=20{3}+12{5/2}| |gID-chi=2|gID-group=Ih| |gID-B=Gid|gID-dual=Great rhombic triacontahedron |gID-dimage=DU54 great rhombic triacontahedron.png
|gtI-name=Truncated great icosahedron| |gtI-image=Great truncated icosahedron.png| |gtI-vfigimage=Great truncated icosahedron vertfig.png|gtI-vfig=6.6.5/2| |gtI-Wythoff=25/2 | 3| |gtI-W=95|gtI-U=55|gtI-K=60|gtI-C=71| |gtI-V=60|gtI-E=90|gtI-F=32|gtI-Fdetail=12{5/2}+20{6}| |gtI-chi=2|gtI-group=Ih| |gtI-B=Tiggy|gtI-dual=Great stellapentakis dodecahedron |gtI-dimage=DU55 great stellapentakisdodecahedron.png
|rI-name=Rhombicosahedron| |rI-image=Rhombicosahedron.png| |rI-vfigimage=Rhombicosahedron vertfig.png|rI-vfig=4.6.4/3.6/5| |rI-Wythoff=2 3 (5/4 5/2) | | |rI-W=96|rI-U=56|rI-K=61|rI-C=72| |rI-V=60|rI-E=120|rI-F=50|rI-Fdetail=30{4}+20{6}| |rI-chi=-10|rI-group=Ih| |rI-B=Ri|rI-dual=Rhombicosacron |rI-dimage=DU56 rhombicosacron.png
|Gosid-name=Great snub icosidodecahedron| |Gosid-image=Great snub icosidodecahedron.png| |Gosid-vfigimage=Great snub icosidodecahedron vertfig.png| |Gosid-solid=S+| |Gosid-Wythoff=|2 5/2 3| |Gosid-vfig=34.5/2| |Gosid-B=Gosid|Gosid-group=I |Gosid-W=116|Gosid-U=57|Gosid-K=62|Gosid-C=88| |Gosid-V=60|Gosid-E=150|Gosid-F=92|Gosid-chi=2|Gosid-Fdetail=(20+60){3}+12{5/2}| |Gosid-dual=Great pentagonal hexecontahedron |Gosid-dimage=DU57 great pentagonal hexecontahedron.png
|lstD-name=Small stellated truncated dodecahedron| |lstD-image=Small stellated truncated dodecahedron.png| |lstD-vfigimage=Small stellated truncated dodecahedron vertfig.png|lstD-vfig=5.10/3.10/3| |lstD-altname1=Quasitruncated small stellated dodecahedron| |lstD-altname2=Small stellatruncated dodecahedron| |lstD-Wythoff=2 5 | 5/3| |lstD-W=97|lstD-U=58|lstD-K=63|lstD-C=74| |lstD-V=60|lstD-E=90|lstD-F=24|lstD-Fdetail=12{5}+12{10/3}| |lstD-chi=-6|lstD-group=Ih| |lstD-B=Quitsissid|lstD-dual=Great pentakis dodecahedron |lstD-dimage=DU58 great pentakisdodecahedron.png
|tDD-name=Truncated dodecadodecahedron| |tDD-image=Truncated dodecadodecahedron.png| |tDD-vfigimage=Truncated dodecadodecahedron vertfig.png|tDD-vfig=4.10.10/3| |tDD-altname1=Quasitruncated dodecahedron| |tDD-Wythoff=2 55/3 | | |tDD-W=98|tDD-U=59|tDD-K=64|tDD-C=75| |tDD-V=120|tDD-E=180|tDD-F=54|tDD-Fdetail=30{4}+12{10}+12{10/3}| |tDD-chi=-6|tDD-group=Ih| |tDD-B=Quitdid|tDD-dual=Medial disdyakis triacontahedron |tDD-dimage=DU59 medial disdyakistriacontahedron.png
|Isdid-name=Inverted snub dodecadodecahedron| |Isdid-image=Inverted snub dodecadodecahedron.png| |Isdid-vfigimage=Inverted snub dodecadodecahedron vertfig.png|Isdid-vfig=3.3.5.3.5/3| |Isdid-Wythoff=|5/3 2 5| |Isdid-B=Isdid|Isdid-group=I |Isdid-W=114|Isdid-U=60|Isdid-K=65|Isdid-C=76| |Isdid-V=60|Isdid-E=150|Isdid-F=84|Isdid-chi=-6|Isdid-Fdetail=60{3}+12{5}+12{5/2}| |Isdid-dual=Medial inverted pentagonal hexecontahedron |Isdid-dimage=DU60 medial inverted pentagonal hexecontahedron.png
|gDID-name=Great dodecicosidodecahedron| |gDID-image=Great dodecicosidodecahedron.png| |gDID-vfigimage=Great dodecicosidodecahedron vertfig.png|gDID-vfig=3.10/3.6/5.10/7| |gDID-Wythoff=5/2 3 | 5/3| |gDID-W=99|gDID-U=61|gDID-K=66|gDID-C=77| |gDID-V=60|gDID-E=120|gDID-F=44| |gDID-Fdetail=20{3}+12{5/2}+12{10/3}| |gDID-chi=-16|gDID-group=Ih| |gDID-B=Gaddid|gDID-dual=Great dodecacronic hexecontahedron |gDID-dimage=DU61 great dodecacronic hexecontahedron.png
|lDhI-name=Small dodecahemicosahedron| |lDhI-image=Small dodecahemicosahedron.png| |lDhI-vfigimage=Small dodecahemicosahedron vertfig.png|lDhI-vfig=6.5/2.6.5/3| |lDhI-Wythoff=5/35/2 | 3| |lDhI-W=100|lDhI-U=62|lDhI-K=67|lDhI-C=78| |lDhI-V=30|lDhI-E=60|lDhI-F=22|lDhI-Fdetail=12{5/2}+10{6}| |lDhI-chi=-8|lDhI-group=Ih| |lDhI-B=Sidhei|lDhI-dual=Small dodecahemicosacron |lDhI-dimage=Wideblank.png
|gDI-name=Great dodecicosahedron| |gDI-image=Great dodecicosahedron.png| |gDI-vfigimage=Great dodecicosahedron vertfig.png|gDI-vfig=6.10/3.6/5.10/7| |gDI-Wythoff=3 5/3 (3/2 5/2) | | |gDI-W=101|gDI-U=63|gDI-K=68|gDI-C=79| |gDI-V=60|gDI-E=120|gDI-F=32|gDI-Fdetail=20{6}+12{10/3}| |gDI-chi=-28|gDI-group=Ih| |gDI-B=Giddy|gDI-dual=Great dodecicosacron |gDI-dimage=DU63 great dodecicosacron.png
|Gisdid-name=Great snub dodecicosidodecahedron| |Gisdid-image=Great snub dodecicosidodecahedron.png| |Gisdid-vfigimage=Great snub dodecicosidodecahedron vertfig.png|Gisdid-vfig=3.3.3.5/2.3.5/3| |Gisdid-Wythoff=| 5/3 5/2 3| |Gisdid-B=Gisdid|Gisdid-group=I| |Gisdid-W=115|Gisdid-U=64|Gisdid-K=69|Gisdid-C=80| |Gisdid-V=60|Gisdid-E=180|Gisdid-F=104|Gisdid-chi=-16| |Gisdid-Fdetail=(20+60){3}+(12+12){5/2}| |Gisdid-dual=Great hexagonal hexecontahedron |Gisdid-dimage=DU64 great hexagonal hexecontahedron.png
|gDhI-name=Great dodecahemicosahedron| |gDhI-image=Great dodecahemicosahedron.png| |gDhI-vfigimage=Great dodecahemicosahedron vertfig.png|gDhI-vfig=5.6.5/4.6| |gDhI-Wythoff=5/45 | 3| |gDhI-W=102|gDhI-U=65|gDhI-K=70|gDhI-C=81| |gDhI-V=30|gDhI-E=60|gDhI-F=22|gDhI-Fdetail=12{5}+10{6}| |gDhI-chi=-8|gDhI-group=Ih| |gDhI-B=Gidhei|gDhI-dual=Great dodecahemicosacron |gDhI-dimage=Wideblank.png
|gstD-name=Great stellated truncated dodecahedron| |gstD-image=Great stellated truncated dodecahedron.png| |gstD-vfigimage=Great stellated truncated dodecahedron vertfig.png|gstD-vfig=3.10/3.10/3| |gstD-altname1=Quasitruncated great stellated dodecahedron| |gstD-altname2=Great stellatruncated dodecahedron| |gstD-Wythoff=2 3 | 5/3| |gstD-W=104|gstD-U=66|gstD-K=71|gstD-C=83| |gstD-V=60|gstD-E=90|gstD-F=32|gstD-Fdetail=20{3}+12{10/3}| |gstD-chi=2|gstD-group=Ih| |gstD-B=Quitgissid|gstD-dual=Great triakis icosahedron |gstD-dimage=DU66 great triakisicosahedron.png
|ugrID-name=Uniform great rhombicosidodecahedron| |ugrID-image=Uniform great rhombicosidodecahedron.png| |ugrID-vfigimage=Uniform great rhombicosidodecahedron vertfig.png|ugrID-vfig=3.4.5/3.4| |ugrID-altname1=Quasirhombicosidodecahedron| |ugrID-Wythoff=5/33 | 2| |ugrID-W=105|ugrID-U=67|ugrID-K=72|ugrID-C=84| |ugrID-V=60|ugrID-E=120|ugrID-F=62|ugrID-Fdetail=20{3}+30{4}+12{5/2}| |ugrID-chi=2|ugrID-group=Ih| |ugrID-B=Qrid|ugrID-dual=Great deltoidal hexecontahedron |ugrID-dimage=DU67 great strombic hexecontahedron.png
|gtID-name=Great truncated icosidodecahedron| |gtID-image=Great truncated icosidodecahedron.png| |gtID-vfigimage=Great truncated icosidodecahedron vertfig.png|gtID-vfig=4.6.10/3| |gtID-altname1=Great quasitruncated icosidodecahedron| |gtID-Wythoff=2 35/3 | | |gtID-W=108|gtID-U=68|gtID-K=73|gtID-C=87| |gtID-V=120|gtID-E=180|gtID-F=62|gtID-Fdetail=30{4}+20{6}+12{10/3}| |gtID-chi=2|gtID-group=Ih| |gtID-B=Gaquatid|gtID-dual=Great disdyakis triacontahedron |gtID-dimage=DU68 great disdyakistriacontahedron.png
|Gisid-name=Great inverted snub icosidodecahedron| |Gisid-image=Great inverted snub icosidodecahedron.png| |Gisid-vfigimage=Great inverted snub icosidodecahedron vertfig.png| |Gisid-Wythoff=|5/3 2 3| |Gisid-vfig=34.5/3| |Gisid-B=Gisid|Gisid-group=I| |Gisid-W=113|Gisid-U=69|Gisid-K=74|Gisid-C=73| |Gisid-V=60|Gisid-E=150|Gisid-F=92|Gisid-chi=2|Gisid-Fdetail=(20+60){3}+12{5/2}| |Gisid-dual=Great inverted pentagonal hexecontahedron |Gisid-dimage=DU69 great inverted pentagonal hexecontahedron.png
|gDhD-name=Great dodecahemidodecahedron| |gDhD-image=Great dodecahemidodecahedron.png| |gDhD-vfigimage=Great dodecahemidodecahedron vertfig.png|gDhD-vfig=5/2.10/3.5/3.10/3| |gDhD-Wythoff=5/35/2 | 5/3| |gDhD-W=107|gDhD-U=70|gDhD-K=75|gDhD-C=86| |gDhD-V=30|gDhD-E=60|gDhD-F=18|gDhD-Fdetail=12{5/2}+6{10/3}| |gDhD-chi=-12|gDhD-group=Ih| |gDhD-B=Gidhid|gDhD-dual=Great dodecahemidodecracon |gDhD-dimage=Wideblank.png
|gIhD-name=Great icosihemidodecahedron| |gIhD-image=Great icosihemidodecahedron.png| |gIhD-vfigimage=Great icosihemidodecahedron vertfig.png|gIhD-vfig=3.10/3.3.10/3| |gIhD-Wythoff=3 3 | 5/3| |gIhD-W=106|gIhD-U=71|gIhD-K=76|gIhD-C=85| |gIhD-V=30|gIhD-E=60|gIhD-F=26|gIhD-Fdetail=20{3}+6{10/3}| |gIhD-chi=-4|gIhD-group=Ih| |gIhD-B=Geihid|gIhD-dual=Great icosihemidodecacron |gIhD-dimage=Wideblank.png
|Sirsid-name=Small retrosnub icosicosidodecahedron| |Sirsid-image=Small retrosnub icosicosidodecahedron.png| |Sirsid-vfigimage=Small retrosnub icosicosidodecahedron vertfig.png| |Sirsid-Wythoff=|3/2 3/2 5/2| |Sirsid-vfig=(35.5/3)/2| |Sirsid-B=Sirsid|Sirsid-group=Ih| |Sirsid-W=118|Sirsid-U=72|Sirsid-K=77|Sirsid-C=91| |Sirsid-V=60|Sirsid-E=180|Sirsid-F=112|Sirsid-chi=-8|Sirsid-Fdetail=(40+60){3}+12{5/2}| |Sirsid-altname1=Small inverted retrosnub icosicosidodecahedron| |Sirsid-dual=Small hexagrammic hexecontahedron |Sirsid-dimage=DU72 small hexagrammic hexecontahedron.png
|grD-name=Great rhombidodecahedron| |grD-image=Great rhombidodecahedron.png| |grD-vfigimage=Great rhombidodecahedron vertfig.png|grD-vfig=4.10/3.4/3.10/7| |grD-Wythoff=2 5/3 (3/2 5/4) | | |grD-W=109|grD-U=73|grD-K=78|grD-C=89| |grD-V=60|grD-E=120|grD-F=42|grD-Fdetail=30{4}+12{10/3}| |grD-chi=-18|grD-group=Ih| |grD-B=Gird|grD-dual=Great rhombidodecacron |grD-dimage=DU73 great rhombidodecacron.png
|Girsid-name=Great retrosnub icosidodecahedron| |Girsid-image=Great retrosnub icosidodecahedron.png| |Girsid-vfigimage=Great retrosnub icosidodecahedron vertfig.png| |Girsid-Wythoff=|3/2 5/3 2| |Girsid-vfig=(34.5/2)/2| |Girsid-B=Girsid|Girsid-group=I |Girsid-W=117|Girsid-U=74|Girsid-K=79|Girsid-C=90| |Girsid-V=60|Girsid-E=150|Girsid-F=92|Girsid-chi=2|Girsid-Fdetail=(20+60){3}+12{5/2}| |Girsid-altname1=Great inverted retrosnub icosidodecahedron| |Girsid-dual=Great pentagrammic hexecontahedron |Girsid-dimage=DU74 great pentagrammic hexecontahedron.png
|Gidrid-name=Great dirhombicosidodecahedron| |Gidrid-image=Great dirhombicosidodecahedron.png| |Gidrid-vfigimage=Great dirhombicosidodecahedron vertfig.png| |Gidrid-Wythoff=|3/2 5/3 3 5/2| |Gidrid-vfig=4.5/3.4.3.4.
5/2.4.3/2| |Gidrid-B=Gidrid|Gidrid-group=Ih |Gidrid-W=119|Gidrid-U=75|Gidrid-K=80|Gidrid-C=92| |Gidrid-V=60|Gidrid-E=240|Gidrid-F=124|Gidrid-chi=-56|Gidrid-Fdetail=40{3}+60{4}+24{5/2}| |Gidrid-dual=Great dirhombicosadodecacron |Gidrid-dimage=Wideblank.png
|Skilling-name=Great disnub dirhombidodecahedron| |Skilling-image=Great disnub dirhombidodecahedron.png| |Skilling-vfigimage=Great disnub dirhombidodecahedron vertfig.png| |Skilling-Wythoff=| (3/2) 5/3 (3) 5/2| |Skilling-vfig=(5/2.4.3.3.3.4. 5/3.4.3/2.3/2.3/2.4)/2| |Skilling-B=-|Skilling-group=Ih |Skilling-W=-|Skilling-U=-|Skilling-K=-|Skilling-C=-| |Skilling-V=60|Skilling-E=240|Skilling-F=204|Skilling-chi=32|Skilling-Fdetail=120{3}+60{4}+24{5/2}| |Skilling-dual=Great disnub dirhombidodecacron
}}