Undergraduate Texts in Mathematics
From Wikipedia, the free encyclopedia
Undergraduate Texts in Mathematics (UTM) is a series of undergraduate-level textbooks in mathematics published by Springer-Verlag. The books in this series, like the other Springer-Verlag mathematics series, are small yellow books of a standard size. As of April 2008, there are a hundred and forty four titles in the series[1].
The books in this series tend to be written at a more elementary level than the similar Graduate Texts in Mathematics series, although there is a fair amount of overlap between the two series in terms of material covered and difficulty level.
[edit] List of books
Please help improve this section by expanding it. Further information might be found on the talk page or at requests for expansion. |
- Abbott, S (2002). Understanding Analysis. ISBN 978-0-387-95060-0.
- Armstrong, M.A. (1983). Basic Topology. ISBN 0-387-90839-0.
- Armstrong, M.A. (1988). Groups and Symmetry. ISBN 0-387-96675-7.
- Apostol, Tom M. (1998). Introduction to Analytic Number Theory. ISBN 0-387-90163-9.
- Axler, S (1997). Linear Algebra Done Right, Second Edition. ISBN 978-0-387-98259-5.
- Bak, Joseph; Donald J. Newman (2001). Complex Analysis. ISBN 0-387-94756-6.
- Banchoff, Th.; Wermer, J (1993). Linear Algebra Through Geometry, Second Edition. ISBN 978-0-387-97586-3.
- Beardon, A.F (1997). Limits: A New Approach to Real Analysis. ISBN 978-0-387-98274-8.
- Beck, M.; Robins, S. (2007). Computing the Continuous Discretely. ISBN 978-0-387-29139-0.
- Berberian, S.K. (1998). A First Course in Real Analysis. ISBN 978-0-387-94217-9.
- Bix, R (2006). Conics and Cubics: A Concrete Introduction to Algebraic Curves. ISBN 978-0-387-96460-7.
- Breamaud, P. (1994). An Introduction to Probabilistic Modeling. ISBN 978-0-387-96460-7.
- Bressoud, D.M. (1989). Factorization and Primality Testing. ISBN 978-0-387-97040-0.
- Brickman, L. (1998). Mathematical Introduction to Linear Programming and Game Theory. ISBN 978-0-387-96931-2.
- Browder, A. (2001). Mathematical Analysis: An Introduction. ISBN 978-0-387-94614-6.
- Buchmann, J. (2004). Introduction to Cryptography. ISBN 978-0-387-21156-5.
- Buskes, G.; van Rooij, A. (1997). Topological Spaces: From Distance to Neighborhood. ISBN 978-0-387-94994-9.
- Callahan, J.J. (2001). The Geometry of Spacetime: An Introduction to Special and General Relativity. ISBN 978-0-387-98641-8.
- Carter, M.; van Brunt, B. (2000). The Lebesgue-Stieltjies Integral: A Practical Introduction. ISBN 978-0-387-95012-9.
- Cederberg, J.N. (2004). A Course in Modern Geometries, Second Edtion. ISBN 978-0-387-98972-3.
- Chambert-Loir,, A. (2005). A Field Guide to Algebra. ISBN 978-0-387-21428-3.
- Childs, L.N. (2000). A Concrete Introduction to Higher Algebra. ISBN 978-0-387-98999-0.
- Chung, D.; AitSahlia, F (2003). Elementary Probability Theory with Stochastic Processes. ISBN 978-0-387-95578-0.
- Cox, D; Little, J et al. (2008). Ideals, Varieties, and Algorithms, Second Edition. ISBN 978-0-387-35650-1.
- Croom, F.H. (1978). Basic Concepts of Algebraic Topology. ISBN 978-0-387-90288-3.
- Cull, P. (2005). Difference Equations: From Rabbits to Chaos. ISBN 978-0-387-23233-1.
- Curtis, Charles W. (1999). Linear Algebra: An Introductory Approach. ISBN 0-387-90992-3.
- Daepp, U. (2003). Reading, Writing, and Proving: A Closer Look at Mathematics. ISBN 978-0-387-00834-9.
- Devlin, Keith (1993). The Joy of Sets, Fundamentals of Contemporary Set Theory, 2nd Edition. ISBN 0-387-94094-4.
- Dixmier, J. (1984). General Topology. ISBN 978-0-387-90972-1.
- Driver, R.D. (1995). Why Math?. ISBN 978-0-387-94427-2.
- Ebbinghaus, H.-D.; J.Flum, W. Thomas (1994). Mathematical Logic, 2nd Edition. ISBN 0-387-94258-0.
- Jones, Gareth A. (1998). Elementary Number Theory. ISBN 3540761977.
- Moschovakis, Yiannis N. (1994). Notes on Set Theory. ISBN 0-387-94180-0.
- Stillwell, John [1989]. Mathematics and Its History (Hardcover), 2nd edition, 163. ISBN 0-387-95336-1.
- Thorpe, John A. (1979). Basic Topology. ISBN 0-387-90357-7.