Ultra exponential function

From Wikipedia, the free encyclopedia

In mathematics the ultra exponential function is a special case of the iterated exponential function more commonly known as tetration, with specific extension to non-integer values of the argument.

Contents

[edit] Definition

Uxpa(x)  : Divergently ultra exponential curve.
Uxpa(x)  : Divergently ultra exponential curve.
Uxpa(x)  : Convergently ultra exponential curve.
Uxpa(x)  : Convergently ultra exponential curve.
Uxpa(x)  : Increasingly Convergently ultra exponential curve.
Uxpa(x)  : Increasingly Convergently ultra exponential curve.
Uxpa(x)  : Unbounded ultra exponential curve.
Uxpa(x)  : Unbounded ultra exponential curve.
Uxpa(x)  : Convex ultra exponential curve.
Uxpa(x)  : Convex ultra exponential curve.
  Infinite power tower.
\lim_{n\rightarrow \infty} x^{\frac{n}{}} Infinite power tower.

Let a be a positive real number. The notation a^{\frac{n}{}} which is defined by a^{\frac{n}{}} =a^{a^{\frac{n-1}{}}} (n=2,3,4,\cdots), a^{\frac{1}{}}= a is called a to the "ultra power" of n. In other words a^{\frac{n}{}}=a^{a^{.^{.^{.^a}}}}, n times. For other notations see tetration.

Necessary and sufficient conditions for the convergence of \lim_{n\rightarrow \infty} a^{\frac{n}{}} were proved by Leonard Euler.

Hooshmand[1] defined the "ultra exponential function" using the functional equation f(x) = af(x − 1).

A main theorem in Hoooshmand's paper states: Let  0<a\neq 1. If f:(-2,+\infty)\rightarrow \mathbb{R} satisfies the conditions:

  •  f(x)=a^{f(x-1)} \; \; \mbox{for all} \; \; x>-1, \; f(0)=1 ,
  • f is differentiable on ( − 1,0),
  • f\; ^' is a nondecreasing or nonincreasing function on ( − 1,0),
  • \lim_{x\rightarrow 0^+}f'(x)=(\ln a) \lim_{x\rightarrow0^-} f'(x),

then f is uniquely determined through the equation

 \; \; \; f(x)=\exp^{[x]}_a (a^{(x)})=\exp^{[x+1]}_a((x)) \; \; \; \mbox{for all} \; \; x>-2,

where (x) = x − [x] denotes the fractional part of x and  \exp^{[x]}_a is the [x]-iterated function of the function expa.

The ultra exponential function is then defined as  \mbox{uxp}_a(x)=\exp^{[x+1]}_a((x)) \; \; \; \mbox{for all} \; \; x>-2 .

[edit] Ultra power

Since \mbox{uxp}_a(n)=a^{ \frac{n}{}} , for every positive integer n, and because of the uniqueness theorem, the definition of ultra power is extended by a^{ \frac{x}{}}= \mbox{uxp}_a(x) . If 0 < a < 1, then a^{ \frac{x}{}} can be defined on a larger domain than  (-2,+\infty).

Examples: a^{\frac{0}{}}=1,\; a^{\frac{-1}{}}=0,\; 2{ \frac{4}{}}=65536,\; e{ \frac{\pi /2}{}}=5.868...,\; 0.5^{ \frac{-4.3}{}}=4.03335...,\; 0.6^{ \frac{-5.264}{}}=-5.35997...,  0.7^{ \frac{3.1}{}}=0.7580... .

[edit] Natural ultra exponential function

The "natural[dubious ] ultra exponential function"  e^{\frac{x}{}}, denoted by \operatorname{uxp}(x), is continuously differentiable, but its second derivative does not exist at integer values of its argument.

\operatorname{uxp}'(x) is increasing on [-1,+\infty), so \operatorname{uxp}(x) is convex on [-1,+\infty).

The function \chi=\operatorname{uxp}' satisfies the following functional equation (difference equation):

 \; \; \; \; \chi(x)=e^{ \frac{x}{}} \chi(x-1) \; \; \; \mbox{for all} \; \; x>-1.

There is another uniqueness theorem for the natural ultra exponential function that states: If  f: (-2, +\infty)\rightarrow \mathbb{R} is a function for which:

  •  f(x)=e^{f(x-1)} \; \; \; \mbox{for all} \; \; x>-1,
  • f(0) = 1,
  • f is convex on ( − 1,0),
  • f'_-(0)\leq f'_+(0),

then f = uxp.

[edit] Ultra exponential curves

There are five kinds of graph for the ultra exponential functions, depended on range values of a (figures 1-5). If  a>e^{\frac{1}{e}} , then the ultra exponential curve is upper and lower unbounded. It is convex from a number on, if  a\geq e .

[edit] Infra logarithm function

If a > 1 , then the ultra exponential function is invertible. Hooshmand denotes its inverse function by Ioga and calls it the "infra logarithm function". The infra logarithm function satisfies the functional equation f(ax) = f(x) + 1.

[edit] See also

[edit] References

  1. ^ M.H. Hooshmand, August 2006, "Ultra power and ultra exponential functions", Integral Transforms and Special Functions, Vol. 17, No. 8, 549-558.