UBE2E3
From Wikipedia, the free encyclopedia
Ubiquitin-conjugating enzyme E2E 3 (UBC4/5 homolog, yeast)
|
||||||||||||||
PDB rendering based on 1y6l. | ||||||||||||||
Available structures: 1y6l | ||||||||||||||
Identifiers | ||||||||||||||
Symbol(s) | UBE2E3; UBCH9; UbcM2 | |||||||||||||
External IDs | OMIM: 604151 MGI: 107412 HomoloGene: 4636 | |||||||||||||
|
||||||||||||||
RNA expression pattern | ||||||||||||||
Orthologs | ||||||||||||||
Human | Mouse | |||||||||||||
Entrez | 10477 | 22193 | ||||||||||||
Ensembl | ENSG00000170035 | ENSMUSG00000027011 | ||||||||||||
Uniprot | Q969T4 | P52483 | ||||||||||||
Refseq | XM_001133072 (mRNA) XP_001133072 (protein) |
XM_001000523 (mRNA) XP_001000523 (protein) |
||||||||||||
Location | Chr 2: 181.55 - 181.64 Mb | Chr 2: 78.67 - 78.72 Mb | ||||||||||||
Pubmed search | [1] | [2] |
Ubiquitin-conjugating enzyme E2E 3 (UBC4/5 homolog, yeast), also known as UBE2E3, is a human gene.[1]
The modification of proteins with ubiquitin is an important cellular mechanism for targeting abnormal or short-lived proteins for degradation. Ubiquitination involves at least three classes of enzymes: ubiquitin-activating enzymes, or E1s, ubiquitin-conjugating enzymes, or E2s, and ubiquitin-protein ligases, or E3s. This gene encodes a member of the E2 ubiquitin-conjugating enzyme family. The encoded protein shares 100% sequence identity with the mouse and rat counterparts, which indicates that this enzyme is highly conserved in eukaryotes. Two alternatively spliced transcript variants encoding the same protein have been found for this gene.[1]
[edit] References
[edit] Further reading
- Hay RT, Vuillard L, Desterro JM, Rodriguez MS (2000). "Control of NF-kappa B transcriptional activation by signal induced proteolysis of I kappa B alpha.". Philos. Trans. R. Soc. Lond., B, Biol. Sci. 354 (1389): 1601–9. doi: . PMID 10582246.
- Desterro JM, Thomson J, Hay RT (1998). "Ubch9 conjugates SUMO but not ubiquitin.". FEBS Lett. 417 (3): 297–300. PMID 9409737.
- Desterro JM, Rodriguez MS, Hay RT (1998). "SUMO-1 modification of IkappaBalpha inhibits NF-kappaB activation.". Mol. Cell 2 (2): 233–9. PMID 9734360.
- Desterro JM, Rodriguez MS, Kemp GD, Hay RT (1999). "Identification of the enzyme required for activation of the small ubiquitin-like protein SUMO-1.". J. Biol. Chem. 274 (15): 10618–24. PMID 10187858.
- Ito K, Kato S, Matsuda Y, et al. (1999). "cDNA cloning, characterization, and chromosome mapping of UBE2E3 (alias UbcH9), encoding an N-terminally extended human ubiquitin-conjugating enzyme.". Cytogenet. Cell Genet. 84 (1-2): 99–104. PMID 10343118.
- Zhang QH, Ye M, Wu XY, et al. (2001). "Cloning and functional analysis of cDNAs with open reading frames for 300 previously undefined genes expressed in CD34+ hematopoietic stem/progenitor cells.". Genome Res. 10 (10): 1546–60. PMID 11042152.
- Pringa E, Martinez-Noel G, Muller U, Harbers K (2001). "Interaction of the ring finger-related U-box motif of a nuclear dot protein with ubiquitin-conjugating enzymes.". J. Biol. Chem. 276 (22): 19617–23. doi: . PMID 11274149.
- Ito K, Adachi S, Iwakami R, et al. (2001). "N-Terminally extended human ubiquitin-conjugating enzymes (E2s) mediate the ubiquitination of RING-finger proteins, ARA54 and RNF8.". Eur. J. Biochem. 268 (9): 2725–32. PMID 11322894.
- Plafker SM, Macara IG (2002). "Ribosomal protein L12 uses a distinct nuclear import pathway mediated by importin 11.". Mol. Cell. Biol. 22 (4): 1266–75. PMID 11809816.
- Strausberg RL, Feingold EA, Grouse LH, et al. (2003). "Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences.". Proc. Natl. Acad. Sci. U.S.A. 99 (26): 16899–903. doi: . PMID 12477932.
- Lehner B, Semple JI, Brown SE, et al. (2004). "Analysis of a high-throughput yeast two-hybrid system and its use to predict the function of intracellular proteins encoded within the human MHC class III region.". Genomics 83 (1): 153–67. PMID 14667819.
- Beausoleil SA, Jedrychowski M, Schwartz D, et al. (2004). "Large-scale characterization of HeLa cell nuclear phosphoproteins.". Proc. Natl. Acad. Sci. U.S.A. 101 (33): 12130–5. doi: . PMID 15302935.
- Gerhard DS, Wagner L, Feingold EA, et al. (2004). "The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC).". Genome Res. 14 (10B): 2121–7. doi: . PMID 15489334.
- Plafker SM, Plafker KS, Weissman AM, Macara IG (2005). "Ubiquitin charging of human class III ubiquitin-conjugating enzymes triggers their nuclear import.". J. Cell Biol. 167 (4): 649–59. doi: . PMID 15545318.
- Barrios-Rodiles M, Brown KR, Ozdamar B, et al. (2005). "High-throughput mapping of a dynamic signaling network in mammalian cells.". Science 307 (5715): 1621–5. doi: . PMID 15761153.
- Hillier LW, Graves TA, Fulton RS, et al. (2005). "Generation and annotation of the DNA sequences of human chromosomes 2 and 4.". Nature 434 (7034): 724–31. doi: . PMID 15815621.
- Rual JF, Venkatesan K, Hao T, et al. (2005). "Towards a proteome-scale map of the human protein-protein interaction network.". Nature 437 (7062): 1173–8. doi: . PMID 16189514.
- Lim J, Hao T, Shaw C, et al. (2006). "A protein-protein interaction network for human inherited ataxias and disorders of Purkinje cell degeneration.". Cell 125 (4): 801–14. doi: . PMID 16713569.