Tsunami
From Wikipedia, the free encyclopedia
A tsunami (pronounced /tsuːˈnɑːmi/) is a series of waves created when a body of water, such as an ocean, is rapidly displaced. Earthquakes, mass movements above or below water, some volcanic eruptions and other underwater explosions, landslides, underwater earthquakes, large asteroid impacts and testing with nuclear weapons at sea all have the potential to generate a tsunami. The effects of a tsunami can be devastating due to the immense volumes of water and energy involved. Since meteorites are small, they will not generate a tsunami.
The Greek historian Thucydides was the first to relate tsunamis to submarine quakes,[1] [2] but understanding of the nature of tsunamis remained slim until the 20th century and is the subject of ongoing research.
Many early geological, geographic, oceanographic etc; texts refer to "Seismic sea waves" - these are now referred to as "tsunami."
Some meteorological storm conditions - deep depressions causing cyclones, hurricanes; can generate a storm surge which can be several metres above normal tide levels. This is due to the low atmospheric pressure within the centre of the depression. As these storm surges come ashore the surge can resemble a tsunami, inundating vast areas of land. These are not tsunami. Such a storm surge inundated Burma or, Myanmar in May 2008.
Contents |
Terminology
The term tsunami comes from the Japanese meaning harbor ("tsu", 津) and wave ("nami", 波). [a. Jap. tsunami, tunami, f. tsu harbour + nami waves. - Oxford English Dictionary]. For the plural, one can either follow ordinary English practice and add an s, or use an invariable plural as in Japanese. Tsunamis are common throughout Japanese history; approximately 195 events in Japan have been recorded.
A tsunami has a much smaller amplitude (wave height) offshore, and a very long wavelength (often hundreds of kilometers long), which is why they generally pass unnoticed at sea, forming only a slight swell usually about 300 mm above the normal sea surface. A tsunami can occur at any state of the tide and even at low tide will still inundate coastal areas if the incoming waves surge high enough.
Tsunamis are often referred to popularly as tidal waves. This term is inaccurate because tsunamis are not related to tides and its use is discouraged by geologists and oceanographers; however, it is worth noting that the term tsunami is no more accurate because tsumanis are not limited to harbours.
Causes
A tsunami can be generated when converging or destructive plate boundaries abruptly move and vertically displace the overlying water. It is very unlikely that they can form at divergent (constructive) or conservative plate boundaries. This is because constructive or conservative boundaries do not generally disturb the vertical displacement of the water column. Subduction zone related earthquakes generate the majority of all tsunamis.
On 1 April 1946 a Magnitude 7.8 (Richter Scale) earthquake occurred near the Aleutian Islands, Alaska. It generated a tsunami which inundated Hilo on the island of Hawai'i with a 14 m high surge. The area where the earthquake occurred is where the Pacific Ocean floor is subducting (or being pushed downwards) under Alaska.
Examples of tsunami being generated at locations away from convergent boundaries include - Storegga during the Neolithic era, Grand Banks 1929, Papua New Guinea 1998 (Tappin, 2001). In the case of the Grand Banks and Papua New Guinea tsunamis an earthquake caused sediments to become unstable and subsequently fail. These slumped and as they flowed down slope a tsunami was generated. These tsunami did not travel transoceanic distances.
It is not known what caused the Storegga sediments to fail. It may have been due to overloading of the sediments causing them to become unstable and they then failed solely as a result of being overloaded. It is also possible that an earthquake caused the sediments to become unstable and then fail. Another theory is that a release of gas hydrates (methane etc.,) caused the slump.
The "Great Chilean earthquake" (19:11 hrs UTC) 22 May 1960 (9.5 Mw), the 27th March 1964 "Good Friday earthquake" Alaska 1964 (9.2 Mw), and the "Great Sumatra-Andaman earthquake" (00:58:53 UTC) 26 December 2004 (9.2 Mw), are recent examples of powerful megathrust earthquakes that generated a tsunami that was able to cross oceans. Smaller (4.2 Mw) earthquakes in Japan can trigger tsunami that can devastate nearby coasts within 15 minutes or less.
In the 1950s it was hypothesised that larger tsunamis than had previously been believed possible may be caused by landslides, explosive volcanic action e.g., Santorini, Krakatau, and impact events when they contact water. These phenomena rapidly displace large volumes of water, as energy from falling debris or expansion is transferred to the water into which the debris falls at a rate faster than the ocean water can absorb it. They have been named by the media as "mega-tsunami."
Tsunami caused by these mechanisms, unlike the trans-oceanic tsunami caused by some earthquakes, may dissipate quickly and rarely affect coastlines distant from the source due to the small area of sea affected. These events can give rise to much larger local shock waves (solitons), such as the landslide at the head of Lituya Bay 1958, which produced a wave with an initial surge estimated at 524m. However, an extremely large gravitational landslide might generate a so called "mega-tsunami" that may have the ability to travel trans-oceanic distances. This though is strongly debated and there is no actual geological evidence to support this hypothesis.
Signs of an approaching tsunami
There is often no advance warning of an approaching tsunami. However, since earthquakes are often a cause of tsunami, any earthquake occurring near a body of water may generate a tsunami if it occurs at shallow depth, is of moderate or high magnitude, and the water volume and depth is sufficient. In Japan moderate - 4.2 Magnitude earthquakes can generate tsunami which can inundate the area within 15 minutes.
If the first part of a tsunami to reach land is a trough (draw back) rather than a crest of the wave, the water along the shoreline may recede dramatically, exposing areas that are normally always submerged. This can serve as an advance warning of the approaching tsunami which will rush in faster than it is possible to run. If a person is in a coastal area where the sea suddenly draws back (many survivors report an accompanying sucking sound), their only real chance of survival is to run for high ground or seek the high floors of high rise buildings.
In the 2004 tsunami that occurred in the Indian Ocean drawback was not reported on the African coast or any other western coasts it inundated, when the tsunami approached from the east. This was because of the nature of the wave - it moved downwards on the eastern side of the fault line and upwards on the western side. It was the western pulse that inundated coastal areas of Africa and other western areas.
80% of all tsunamis occur in the Pacific Ocean, but are possible wherever large bodies of water are found, including inland lakes. They may be caused by landslides, volcanic explosions, bolides and seismic activity.
Indian Ocean Tsunami According to an article in "Geographical" magazine (April 2008), the Indian Ocean tsunami of 26th December 2004 was not the worst that the region could expect. Professor Costas Synolakis of the Tsunami Research Center at the University of Southern California co-authored a paper in "Geophysical Journal International" which suggests that a future tsunami in the Indian Ocean basin could affect locations such as Madagascar, Singapore, Somalia, Western Australia and many others. The Boxing Day tsunami killed over 300,000 people with many bodies either being lost to the sea or unidentified. Some unofficial estimates have claimed that approximately 1 million people may have died directly or indirectly solely as a result of the tsunami.
Warnings and prevention
A tsunami cannot be prevented or precisely predicted - even if the right magnitude of an earthquake occurs in the right location. Geologists, Oceanographers and Seismologist analyse each earthquake and based upon many factors may or may not issue a tsunami warning. However, there are some warning signs of an impending tsunami, and there are many systems being developed and in use to reduce the damage from tsunami. One of the most important systems that is used and constantly monitored are bottom pressure sensors. These are anchored and attached to buoys. Sensors on the equipment constantly monitor the pressure of the overlying water column - this can be deduced by the simple calculation of:
where
P = the overlying pressure in Newtons per metre square,
ρ = the density of the seawater= 1.1 x 103 kg/m3,
g = the acceleration due to gravity= 9.8 m/s2 and
h = the height of the water column in metres.
Hence for a water column of 5,000 m depth the overlying pressure is equal to
or about 5.7 Million tonnes per metre square.
In instances where the leading edge of the tsunami wave is the trough, the sea will recede from the coast half of the wave's period before the wave's arrival. If the slope of the coastal seabed is shallow, this recession can exceed many hundreds of meters. People unaware of the danger may remain at or near the shore out of curiosity, or for collecting fish from the exposed seabed. During the Indian Ocean tsunami of 26th December 2004, the sea withdrew and many people then went onto the exposed sea bed to investigate. Pictures taken show people on the normally submerged areas with the advancing wave in the background. Most people who were on the beach were unable to escape to high ground and died.
Regions with a high risk of tsunami may use tsunami warning systems to detect tsunami and warn the general population before the wave reaches land. On the west coast of the United States, which is prone to Pacific Ocean tsunami, warning signs advise people of evacuation routes.
The Pacific Tsunami Warning System is based in Honolulu. It monitors all sesimic activity that occurs anywhere within the Pacific. Based up the magnitude and other information a tsunami warning may be issued. It is important to note that the subduction zones around the Pacific are seismically active, but not all earthquakes generate tsunami and for this reason computers are used as a tool to assist in analysing the risk of tsunami generation of each and every earthquake that occurs in the Pacific Ocean and the adjoining land masses.
As a direct result of the Indian Ocean tsunami, a re-appraisal of the tsunami threat of all coastal areas is being undertaken by national governments and the United Nations Disaster Mitigation Committee. A tsunami warning system is currently being installed in the Indian Ocean.
Computer models can predict tsunami arrival - observations have shown that predicted arrival times are usually within minutes of the predicted time. Bottom pressure sensors are able to relay information in real time and based upon the readings and other information about the seismic event that triggered it and the shape of the seafloor (bathymetry) and coastal land (topography), it is possible to estimate the amplitude and therefore the surge height, of the approaching tsunami. All the countries that border the Pacific Ocean collaborate in the Tsunami Warning System and most regularly practice evacuation and other procedures to prepare people for the inevitable tsunami. In Japan such preparation is a mandatory requirement of government, local authorities, emergency services and the population.
Some zoologists hypothesise that animals may have an ability to sense subsonic Rayleigh waves from an earthquake or a tsunami. Some animals seem to have the ability to detect natural phenomena and if correct, careful observation and monitoring could possibly provide advance warning of earthquakes, tsunami etc. However, the evidence is controversial and has not been proven scientifically. There are some unsubstantiated claims that animals before the Lisbon quake were restless and moved away from low lying areas to higher ground. Yet many other animals in the same areas drowned. The phenomenon was also noted in Sri Lanka in the 2004 Indian Ocean earthquake. The following two references whilst relevant, are media and not scientific - (BBC, [1]) (Kenneally, [2]). It is possible that certain animals (e.g., elephants) may have heard the sounds of the tsunami as it approached the coast. The elephants reaction was to move away from the approaching noise - inland. Some humans, on the other hand, went to the shore to investigate and many drowned as a result.
It is not possible to prevent a tsunami. However, in some tsunami-prone countries some measures have been taken to reduce the damage caused on shore. Japan has implemented an extensive programme of building tsunami walls of up to 4.5 m (13.5 ft) high in front of populated coastal areas. Other localities have built floodgates and channels to redirect the water from incoming tsunami. However, their effectiveness has been questioned, as tsunami often surge higher than the barriers. For instance, the Okushiri, Hokkaidō tsunami which struck Okushiri Island of Hokkaidō within two to five minutes of the earthquake on July 12, 1993 created waves as much as 30 m (100 ft) tall - as high as a 10-story building. The port town of Aonae was completely surrounded by a tsunami wall, but the waves washed right over the wall and destroyed all the wood-framed structures in the area. The wall may have succeeded in slowing down and moderating the height of the tsunami, but it did not prevent major destruction and loss of life. (This reference is Japanese - [3])
The effects of a tsunami may be mitigated by natural factors such as tree cover on the shoreline. Some locations in the path of the 2004 Indian Ocean tsunami escaped almost unscathed as a result of the tsunami's energy being absorbed by trees such as coconut palms and mangroves. In one striking example, the village of Naluvedapathy in India's Tamil Nadu region suffered minimal damage and few deaths as the wave broke up on a forest of 80,244 trees planted along the shoreline in 2002 in a bid to enter the Guinness Book of Records. [4] Environmentalists have suggested tree planting along stretches of seacoast which are prone to tsunami risks. It would take some years for the trees to grow to a useful size, but such plantations could offer a much cheaper and longer-lasting means of tsunami mitigation than the construction of artificial barriers.
Tsunami in History
Historically speaking, tsunami are not rare, with at least 25 tsunami occurring in the last century. Of these, many were recorded in the Asia-Pacific region - particularly Japan. The Boxing Day Tsunami in 2004 caused approx. 350,000 deaths and many more injuries.
As early as 426 B.C. the Greek historian Thucydides inquired in his book History of the Peloponnesian War about the causes of tsunami, and argued rightly that it could only be explained as a consequence of ocean earthquakes.[1] He was thus the first in the history of natural science to correlate quakes and waves in terms of cause and effect:[2]
The cause, in my opinion, of this phenomenon must be sought in the earthquake. At the point where its shock has been the most violent the sea is driven back, and suddenly recoiling with redoubled force, causes the inundation. Without an earthquake I do not see how such an accident could happen.[3]
The Roman historian Ammianus Marcellinus (Res Gestae 26.10.15-19) describes the typical sequence of a tsunami including an incipient earthquake, the sudden retreat of the sea and a following gigantic wave on the occasion of the 365 A.D. tsunami devastating Alexandria.[4] [5]
Tsunami and the Bible
Some recent work by scholars (Egyptologists, Israeli and others), geologists and oceanographers (including Dr Iain Stewart of University of Plymouth, UK), indicates that the Santorini eruption (about 1615 BC) may have caused the devastation of the Egyptian armies that is mentioned in Exodus. The Exodus is dated as occurring between 1290 and 1340 BC. It is unlikely that the details were recorded in the immediate aftermath and there was probably a delay in the writing of the account. While there is a discrepancy of about 300 years, given the circumstances surrounding the dating of the Santorini eruption, it is possible that the two events did coincide. Further support for this is that the southeastern corner of the Mediterranean was marshland prior to the construction of the Suez Canal and was a known source of reeds. Is the "Red Sea" a wrong interpretation of the "Reed Sea," and did the Santorini or Minoan eruption coincide with the Exodus? There is ongoing research into this including drilling boreholes to look for tsunamite - the deposit left by tsunamis and other evidence to support or disprove this theory.
See also
- Higher Ground Project
- List of earthquakes
- Meteotsunami
- Megatsunami
- Rogue wave
- Sneaker wave
- Tidal bore
- Tsunami Society
- List of Deadliest Tsunamis
- Earthquake
- Tsunami warning system
- Tsunamis in the United Kingdom
- List of deadliest natural disasters
- Supervolcano
- Hypothetical future disasters
- Minoan eruption
Footnotes
- ^ a b Thucydides: “A History of the Peloponnesian War”, 3.89.1-4
- ^ a b Smid, T. C.: "'Tsunamis' in Greek Literature", Greece & Rome, 2nd Ser., Vol. 17, No. 1 (Apr., 1970), pp. 100-104 (103f.)
- ^ Thucydides: “A History of the Peloponnesian War”, 3.89.5
- ^ Kelly, Gavin (2004), “Ammianus and the Great Tsunami”, The Journal of Roman Studies, Vol. 94, pp. 141-167 (141)
- ^ Stanley, Jean-Daniel & Jorstad, Thomas F. (2005), "The 365 A.D. Tsunami Destruction of Alexandria, Egypt: Erosion, Deformation of Strata and Introduction of Allochthonous Material"
References
- Iwan, W.D., editor, 2006, Summary report of the Great Sumatra Earthquakes and Indian Ocean tsunamis of 26 December 2004 and 28 March 2005: Earthquake Engineering Research Institute, EERI Publication #2006-06, 11 chapters, 100 page summary, plus CD-ROM with complete text and supplementary photographs, EERI Report 2006-06. [www.eeri.org] ISBN 1-932884-19-X
- Dudley, Walter C. & Lee, Min (1988: 1st edition) Tsunami! ISBN 0-8248-1125-9 link
- Kenneally, Christine (December 30 2004). "Surviving the Tsunami". Slate. link
- Macey, Richard (January 1 2005). "The Big Bang that Triggered A Tragedy", The Sydney Morning Herald, p 11 - quoting Dr Mark Leonard, seismologist at Geoscience Australia.
- Lambourne, Helen (March 27 2005). "Tsunami: Anatomy of a disaster". BBC News. link
- abelard.org. tsunamis: tsunamis travel fast but not at infinite speed. Website, retrieved March 29 2005. link
- The NOAA's page on the 2004 Indian Ocean earthquake and tsunami
- Tappin, D; 2001. Local tsunamis. Geoscientist. 11-8, 4-7.
External links
Articles and websites
- How to survive a tsunami - Guide for children and youth
- USGS: Surviving a tsunami (United States)
- Tsunami database with detailed statistics
- NOVA: Wave That Shook The World — Site and special report shot within days of the 2004 Indian Ocean tsunami.
- NOAA Tsunami — General description of tsunamis and the United States agency NOAA's role
- Can HF Radar detect Tsunamis? — University of Hamburg HF-Radar.
- National Tsunami Hazard Mitigation Program — United States coordinated Federal/State effort.
- The International Centre for Geohazards (ICG)
- ITSU — Coordination Group for the Pacific Tsunami Warning System.
- Pacific Tsunami Museum
- Tsunamis and Earthquakes
- Tsunami Centers — United States National Weather Service.
- Tsunami Warning — Tsunami warnings via mobile phone.
- Science of Tsunami Hazards journal
- Envirtech Tsunami Warning System — Based on seabed seismics and sea level gauges.
- Scientific American Magazine (January 2006 Issue) Tsunami: Wave of Change What we can learn from the Indian Ocean tsunami of December 2004.
- Jakarta Tsunami Information Centre
- Social & Economic Costs of Tsunamis in the United States from "NOAA Socioeconomics" website initiative
- NOAA Center for Tsunami Research (NCTR)
Images and video
See also: Images and video, 2004 Indian Ocean earthquake
- [5] 5 Amateur Camcorder Video Streams of the December 26 2004 tsunami that hit Sri Lanka, Thailand and Indonesia (search on tsunamis).
- 2004 Asian Tsunami Satellite Images (Before and After)
- Satellite Images of Tsunami Affected Areas High resolution satellite images showing the effects of the 2004 tsunami on the affected areas in Indonesia, Thailand and Nicobar island of India.
- Computer-generated animation of a tsunami
- Animations of actual and simulated tsunami events from the NOAA Center for Tsunami Research
- Animation of 1960 tsunami originating outside coast of Chile
- The Survivors - A moving travelogue full of stunning images along the tsunami ravaged South-Western Coast of India [Unavailable]
- Origin of a Tsunami - animation showing how the shifting of continental plates in the Indian Ocean created the catastrophe of December 26th 2004.
- CBC Digital Archives – Canada's Earthquakes and Tsunamis
- Tsunami Aftermath in Penang and Kuala Muda, Kedah.
- [6] Amateur photo Thailand Tsunami 2004
- Photos and Videos of Humanitarian Assistance to Tsunami-hit areas by the Singapore Armed Forces