Truncated 600-cell

From Wikipedia, the free encyclopedia

Truncated 600-cell

Schlegel diagram
(icosahedral cells visible)
Type Uniform polychoron
Schläfli symbol t0,1{3,3,5}
Coxeter-Dynkin diagrams Image:CDW_dot.pngImage:CDW_5.pngImage:CDW_dot.pngImage:CDW_3b.pngImage:CDW_ring.pngImage:CDW_3b.pngImage:CDW_ring.png
Cells 120 3.3.3.3.3
600 3.6.6
Faces 2400{3}+1200{6}
Edges 4320
Vertices 1440
Symmetry group H4, [3,3,5]
Properties convex
Vertex figure

Three truncated tetrahedrons and one icosahedron meet at each vertex in a pentagonal pyramid arrangement.

In geometry, the truncated 600-cell is a uniform polychoron.

Contents

[edit] Images


net

Schlegel diagram
and the 120 red icosahedra.

Central part of Schlegel diagram
and some of 120 red icosahedra.

[edit] See also

[edit] References

  • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, editied by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [1]
    • (Paper 22) H.S.M. Coxeter, Regular and Semi-Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
    • (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
    • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
  • J.H. Conway and M.J.T. Guy: Four-Dimensional Archimedean Polytopes, Proceedings of the Colloquium on Convexity at Copenhagen, page 38 und 39, 1965
  • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D. Dissertation, University of Toronto, 1966
  • M. Möller: Definitions and computations to the Platonic and Archimedean polyhedrons, thesis (diploma), University of Hamburg, 2001

[edit] External links

Languages