Triangular function

From Wikipedia, the free encyclopedia

Triangular function
Triangular function

The triangular function (also known as the triangle function, hat function, or tent function) is defined either as:


\begin{align}
\operatorname{tri}(t) = \and (t) \quad 
&\overset{\underset{\mathrm{def}}{}}{=} \ \max(1 - |t|, 0) \\
&= 
\begin{cases}
1 - |t|, & |t| < 1 \\
0, & \mbox{otherwise} 
\end{cases}
\end{align}

or, equivalently, as the convolution of two identical unit rectangular functions:


\begin{align}
\operatorname{tri}(t) = \operatorname{rect}(t) * \operatorname{rect}(t) \quad
&\overset{\underset{\mathrm{def}}{}}{=}  \int_{-\infty}^\infty \mathrm{rect}(\tau) \cdot \mathrm{rect}(t-\tau)\ d\tau\\
&= \int_{-\infty}^\infty \mathrm{rect}(\tau) \cdot \mathrm{rect}(\tau-t)\ d\tau .
\end{align}

The function is useful in signal processing and communication systems engineering as a representation of an idealized signal, and as a prototype or kernel from which more realistic signals can be derived. It also has applications in pulse code modulation as a pulse shape for transmitting digital signals and as a matched filter for receiving the signals. It is also equivalent to the triangular window sometimes called the Bartlett window.


[edit] Scaling

For any parameter, a \ne 0\, :


\begin{align}
\operatorname{tri}(t/a) &= \int_{-\infty}^\infty \mathrm{rect}(\tau) \cdot \mathrm{rect}(\tau - t/a)\ d\tau \\
&= 
\begin{cases}
1 - |t/a|, & |t| < |a| \\
0, & \mbox{otherwise} .
\end{cases}
\end{align}


[edit] Fourier transform

The transform is easily determined using the convolution property of Fourier transforms and the Fourier transform of the rectangular function:


\begin{align}
\mathcal{F}\{\operatorname{tri}(t)\} 
&= \mathcal{F}\{\operatorname{rect}(t) * \operatorname{rect}(t)\}\\
&= \mathcal{F}\{\operatorname{rect}(t)\}\cdot \mathcal{F}\{\operatorname{rect}(t)\}\\
&= \mathcal{F}\{\operatorname{rect}(t)\}^2\\
&= \mathrm{sinc}^2(f) .
\end{align}

[edit] See also