Portal:Topology/Intro

From Wikipedia, the free encyclopedia

Topology (Greek topos, "place," and logos, "study") is a branch of mathematics that is an extension of geometry. Topology begins with a consideration of the nature of space, investigating both its fine structure and its global structure. Topology builds on set theory, considering both sets of points and families of sets.

The word topology is used both for the area of study and for a family of sets with certain properties described below that are used to define a topological space. Of particular importance in the study of topology are functions or maps that are homeomorphisms. Informally, these functions can be thought of as those that stretch space without tearing it apart or sticking distinct parts together.

When the discipline was first properly founded, toward the end of the 19th century, it was called geometria situs (Latin geometry of place) and analysis situs (Latin analysis of place). From around 1925 to 1975 it was an important growth area within mathematics.

Topology is a large branch of mathematics that includes many subfields. The most basic division within topology is point-set topology, which investigates such concepts as compactness, connectedness, and countability; algebraic topology, which investigates such concepts as homotopy and homology; and geometric topology, which studies manifolds and their embeddings, including knot theory.