User:Tomruen/Gosset-Elte figures

From Wikipedia, the free encyclopedia

The complete list of Gosset-Elte figures, named after Thorold Gosset and E. L. Elte, represent all the one-end-ringed single-bifurcating groups with all order 2 or 3 mirror dihedral angles.

The polytopes then fall into something like an ADE classification. Basically, the condition for kij to exist is that

\frac{1}{i+1}+\frac{1}{j+1}+\frac{1}{k+1}>1

or equality if you want to include the honeycombs. (and <1 for hyperbolic honeycombs?)

The Coxeter group [3i,j,k] can generate up to 3 unique uniform Gosset-Elte figures with Coxeter-Dynkin diagrams with one end node ringed. By Coxeter's notation, each figure is represented by kij to mean the end-node on the k-length sequence is ringed.

A-family [3n-1-i,i,0] (Rectified simplices)

Class Simplex Rectified Birectified ...
A1 Image:CD ring.png = 00,0
A2 Image:CD ring.pngImage:CD 3b.pngImage:CD dot.png = 01,0
A3 Image:CD ring.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD dot.png = 02,0 Image:CD dot.pngImage:CD 3b.pngImage:CD ring.pngImage:CD 3b.pngImage:CD dot.png = 01,1
A4 Image:CD ring.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD dot.png = 03,0 Image:CD dot.pngImage:CD 3b.pngImage:CD ring.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD dot.png = 02,1
A5 Image:CD ring.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD dot.png = 04,0 Image:CD dot.pngImage:CD 3b.pngImage:CD ring.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD dot.png = 03,1 Image:CD dot.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD ring.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD dot.png = 02,2
A6 Image:CD ring.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD dot.png = 05,0 Image:CD dot.pngImage:CD 3b.pngImage:CD ring.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD dot.png = 04,1 Image:CD dot.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD ring.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD dot.png = 03,2
... ... ...
An Image:CD ring.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD dot.png...Image:CD 3b.pngImage:CD dot.png = 0n-1,0 Image:CD dot.pngImage:CD 3b.pngImage:CD ring.pngImage:CD 3b.pngImage:CD dot.png...Image:CD 3b.pngImage:CD dot.png = 0n-2,1 ... Image:CD dot.pngImage:CD 3b.pngImage:CD dot.png...Image:CD 3b.pngImage:CD ring.pngImage:CD 3b.pngImage:CD dot.png...Image:CD 3b.pngImage:CD dot.png = 0n-1-m,m

B-family [3n-3,1,1] (demihypercubes)

Class Demihypercubes Orthoplexes
(Regular)
B3=[31,1,0] Image:CD ring.pngImage:CD 3b.pngImage:CD_downbranch-00.png= 11,0  
B4=[31,1,1] Image:CD ring.pngImage:CD 3b.pngImage:CD_downbranch-00.pngImage:CD 3b.pngImage:CD dot.png= 11,1  
B5=[32,1,1] Image:CD ring.pngImage:CD 3b.pngImage:CD_downbranch-00.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD dot.png = 12,1 Image:CD dot.pngImage:CD 3b.pngImage:CD_downbranch-00.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD ring.png= 21,1
B6=[33,1,1] Image:CD ring.pngImage:CD 3b.pngImage:CD_downbranch-00.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD dot.png = 13,1 Image:CD dot.pngImage:CD 3b.pngImage:CD_downbranch-00.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD ring.png = 31,1
... ... ...
Bn=[3n-3,1,1] Image:CD ring.pngImage:CD 3b.pngImage:CD_downbranch-00.pngImage:CD 3b.pngImage:CD dot.png...Image:CD 3b.pngImage:CD dot.png = 1n-3,1 Image:CD dot.pngImage:CD 3b.pngImage:CD_downbranch-00.pngImage:CD 3b.pngImage:CD dot.png...Image:CD 3b.pngImage:CD ring.png = (n-3)1,1

E-family [3n-4,2,1]

Semiregular E-polytope
E3=[3-1,2,1] Image:CD ring.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 2.pngImage:CD dot.png = 2-1,1 Image:CD dot.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 2.pngImage:CD ring.png = 12,-1 Image:CD dot.pngImage:CD 3b.pngImage:CD ring.pngImage:CD 2.pngImage:CD ring.png = (-1)2,1
E4=[30,2,1] Image:CD ring.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD_downbranch-00.png = 20,1 Image:CD dot.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD_downbranch-01.png = 12,0 Image:CD dot.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD_downbranch-10.png = 02,1
E5=[31,2,1] Image:CD ring.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD_downbranch-00.pngImage:CD 3b.pngImage:CD dot.png = 21,1 Image:CD dot.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD_downbranch-01.pngImage:CD 3b.pngImage:CD dot.png = 12,1 Image:CD dot.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD_downbranch-00.pngImage:CD 3b.pngImage:CD ring.png = 12,1
E6=[32,2,1] Image:CD ring.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD_downbranch-00.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD dot.png = 22,1 Image:CD dot.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD_downbranch-01.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD dot.png = 12,2 Image:CD dot.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD_downbranch-00.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD ring.png = 22,1
E7=[33,2,1] Image:CD ring.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD_downbranch-00.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD dot.png = 23,1 Image:CD dot.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD_downbranch-01.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD dot.png = 13,2 Image:CD dot.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD_downbranch-00.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD ring.png = 32,1
E8=[34,2,1] Image:CD ring.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD_downbranch-00.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD dot.png = 24,1 Image:CD dot.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD_downbranch-01.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD dot.png = 14,2 Image:CD dot.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD_downbranch-00.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD ring.png = 42,1

T-family (Euclidean honeycombs)

T7=[32,2,2] Image:CD ring.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD downbranch-00.pngImage:CD downbranch-33.pngImage:CD downbranch-open.pngImage:CD 3b.pngImage:CD dot.png = 22,2    
T8=[33,3,1] Image:CD ring.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD downbranch-00.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD dot.png = 33,1 Image:CD dot.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD downbranch-01.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD dot.png = 13,3
T9=[35,2,1] Image:CD ring.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD downbranch-00.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD dot.png = 25,1 Image:CD dot.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD downbranch-01.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD dot.png = 15,2 Image:CD dot.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD downbranch-00.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD ring.png = 52,1

Hyperbolic honeycombs ??

 ?8=[33,2,2] Image:CD ring.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD downbranch-00.pngImage:CD downbranch-33.pngImage:CD downbranch-open.pngImage:CD 3b.pngImage:CD dot.png = 32,2 (??) Image:CD dot.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD downbranch-00.pngImage:CD downbranch-33.pngImage:CD downbranch-open.pngImage:CD 3b.pngImage:CD ring.png = 23,2 (??)
 ?9=[34,2,2] Image:CD ring.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD downbranch-00.pngImage:CD downbranch-33.pngImage:CD downbranch-open.pngImage:CD 3b.pngImage:CD dot.png = 42,2 (??) Image:CD dot.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD downbranch-00.pngImage:CD downbranch-33.pngImage:CD downbranch-open.pngImage:CD 3b.pngImage:CD ring.png = 24,2 (??)
 ?9=[34,3,1] Image:CD ring.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD downbranch-00.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD dot.png = 43,1 (??) Image:CD dot.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD downbranch-00.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD ring.png = 34,1 (??) Image:CD dot.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD downbranch-01.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD dot.png = 14,3 (??)

[edit] See also

[edit] References

  • Gosset, Thorold (1900). "On the regular and semi-regular figures in space of n dimensions". Messenger of Mathematics 29: 43–48. 
  • Elte, E. L. (1912), The Semiregular Polytopes of the Hyperspaces, Groningen: University of Groningen