User:Tomruen/Gosset-Elte figures
From Wikipedia, the free encyclopedia
The complete list of Gosset-Elte figures, named after Thorold Gosset and E. L. Elte, represent all the one-end-ringed single-bifurcating groups with all order 2 or 3 mirror dihedral angles.
The polytopes then fall into something like an ADE classification. Basically, the condition for kij to exist is that
or equality if you want to include the honeycombs. (and <1 for hyperbolic honeycombs?)
The Coxeter group [3i,j,k] can generate up to 3 unique uniform Gosset-Elte figures with Coxeter-Dynkin diagrams with one end node ringed. By Coxeter's notation, each figure is represented by kij to mean the end-node on the k-length sequence is ringed.
A-family [3n-1-i,i,0] (Rectified simplices)
B-family [3n-3,1,1] (demihypercubes)
Class | Demihypercubes | Orthoplexes (Regular) |
---|---|---|
B3=[31,1,0] | = 11,0 | |
B4=[31,1,1] | = 11,1 | |
B5=[32,1,1] | = 12,1 | = 21,1 |
B6=[33,1,1] | = 13,1 | = 31,1 |
... | ... | ... |
Bn=[3n-3,1,1] | ... = 1n-3,1 | ... = (n-3)1,1 |
E-family [3n-4,2,1]
Semiregular E-polytope | |||
---|---|---|---|
E3=[3-1,2,1] | = 2-1,1 | = 12,-1 | = (-1)2,1 |
E4=[30,2,1] | = 20,1 | = 12,0 | = 02,1 |
E5=[31,2,1] | = 21,1 | = 12,1 | = 12,1 |
E6=[32,2,1] | = 22,1 | = 12,2 | = 22,1 |
E7=[33,2,1] | = 23,1 | = 13,2 | = 32,1 |
E8=[34,2,1] | = 24,1 | = 14,2 | = 42,1 |
T-family (Euclidean honeycombs)
T7=[32,2,2] | = 22,2 | ||
T8=[33,3,1] | = 33,1 | = 13,3 | |
T9=[35,2,1] | = 25,1 | = 15,2 | = 52,1 |
Hyperbolic honeycombs ??
?8=[33,2,2] | = 32,2 (??) | = 23,2 (??) | |
?9=[34,2,2] | = 42,2 (??) | = 24,2 (??) | |
?9=[34,3,1] | = 43,1 (??) | = 34,1 (??) | = 14,3 (??) |
[edit] See also
[edit] References
- Gosset, Thorold (1900). "On the regular and semi-regular figures in space of n dimensions". Messenger of Mathematics 29: 43–48.
- Elte, E. L. (1912), The Semiregular Polytopes of the Hyperspaces, Groningen: University of Groningen