TNK2
From Wikipedia, the free encyclopedia
Tyrosine kinase, non-receptor, 2
|
||||||||||||||
PDB rendering based on 1cf4. | ||||||||||||||
Available structures: 1cf4, 1u46, 1u4d, 1u54 | ||||||||||||||
Identifiers | ||||||||||||||
Symbol(s) | TNK2; ACK; ACK1; FLJ44758; FLJ45547; p21cdc42Hs | |||||||||||||
External IDs | OMIM: 606994 MGI: 1858308 HomoloGene: 4224 | |||||||||||||
|
||||||||||||||
RNA expression pattern | ||||||||||||||
Orthologs | ||||||||||||||
Human | Mouse | |||||||||||||
Entrez | 10188 | 51789 | ||||||||||||
Ensembl | ENSG00000061938 | ENSMUSG00000022791 | ||||||||||||
Uniprot | Q07912 | Q0Z844 | ||||||||||||
Refseq | NM_001010938 (mRNA) NP_001010938 (protein) |
NM_016788 (mRNA) NP_058068 (protein) |
||||||||||||
Location | Chr 3: 197.07 - 197.12 Mb | Chr 16: 32.58 - 32.6 Mb | ||||||||||||
Pubmed search | [1] | [2] |
Tyrosine kinase, non-receptor, 2, also known as TNK2, is a human gene.[1]
This gene encodes a tyrosine kinase that binds Cdc42Hs in its GTP-bound form and inhibits both the intrinsic and GTPase-activating protein (GAP)-stimulated GTPase activity of Cdc42Hs. This binding is mediated by a unique sequence of 47 amino acids C-terminal to an SH3 domain. The protein may be involved in a regulatory mechanism that sustains the GTP-bound active form of Cdc42Hs and which is directly linked to a tyrosine phosphorylation signal transduction pathway. Several alternatively spliced transcript variants have been identified from this gene, but the full-length nature of only two transcript variants has been determined.[1]
[edit] References
[edit] Further reading
- Maruyama K, Sugano S (1994). "Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides.". Gene 138 (1-2): 171–4. PMID 8125298.
- Manser E, Leung T, Salihuddin H, et al. (1993). "A non-receptor tyrosine kinase that inhibits the GTPase activity of p21cdc42.". Nature 363 (6427): 364–7. doi: . PMID 8497321.
- Satoh T, Kato J, Nishida K, Kaziro Y (1996). "Tyrosine phosphorylation of ACK in response to temperature shift-down, hyperosmotic shock, and epidermal growth factor stimulation.". FEBS Lett. 386 (2-3): 230–4. PMID 8647288.
- Suzuki Y, Yoshitomo-Nakagawa K, Maruyama K, et al. (1997). "Construction and characterization of a full length-enriched and a 5'-end-enriched cDNA library.". Gene 200 (1-2): 149–56. PMID 9373149.
- Mott HR, Owen D, Nietlispach D, et al. (1999). "Structure of the small G protein Cdc42 bound to the GTPase-binding domain of ACK.". Nature 399 (6734): 384–8. doi: . PMID 10360579.
- Eisenmann KM, McCarthy JB, Simpson MA, et al. (2000). "Melanoma chondroitin sulphate proteoglycan regulates cell spreading through Cdc42, Ack-1 and p130cas.". Nat. Cell Biol. 1 (8): 507–13. doi: . PMID 10587647.
- Kato J, Kaziro Y, Satoh T (2000). "Activation of the guanine nucleotide exchange factor Dbl following ACK1-dependent tyrosine phosphorylation.". Biochem. Biophys. Res. Commun. 268 (1): 141–7. doi: . PMID 10652228.
- Owen D, Mott HR, Laue ED, Lowe PN (2000). "Residues in Cdc42 that specify binding to individual CRIB effector proteins.". Biochemistry 39 (6): 1243–50. PMID 10684602.
- Kiyono M, Kato J, Kataoka T, et al. (2000). "Stimulation of Ras guanine nucleotide exchange activity of Ras-GRF1/CDC25(Mm) upon tyrosine phosphorylation by the Cdc42-regulated kinase ACK1.". J. Biol. Chem. 275 (38): 29788–93. doi: . PMID 10882715.
- Linseman DA, Heidenreich KA, Fisher SK (2001). "Stimulation of M3 muscarinic receptors induces phosphorylation of the Cdc42 effector activated Cdc42Hs-associated kinase-1 via a Fyn tyrosine kinase signaling pathway.". J. Biol. Chem. 276 (8): 5622–8. doi: . PMID 11087735.
- Teo M, Tan L, Lim L, Manser E (2001). "The tyrosine kinase ACK1 associates with clathrin-coated vesicles through a binding motif shared by arrestin and other adaptors.". J. Biol. Chem. 276 (21): 18392–8. doi: . PMID 11278436.
- Kato-Stankiewicz J, Ueda S, Kataoka T, et al. (2001). "Epidermal growth factor stimulation of the ACK1/Dbl pathway in a Cdc42 and Grb2-dependent manner.". Biochem. Biophys. Res. Commun. 284 (2): 470–7. doi: . PMID 11394904.
- Oda T, Muramatsu MA, Isogai T, et al. (2001). "HSH2: a novel SH2 domain-containing adapter protein involved in tyrosine kinase signaling in hematopoietic cells.". Biochem. Biophys. Res. Commun. 288 (5): 1078–86. doi: . PMID 11700021.
- Strausberg RL, Feingold EA, Grouse LH, et al. (2003). "Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences.". Proc. Natl. Acad. Sci. U.S.A. 99 (26): 16899–903. doi: . PMID 12477932.
- Salomon AR, Ficarro SB, Brill LM, et al. (2003). "Profiling of tyrosine phosphorylation pathways in human cells using mass spectrometry.". Proc. Natl. Acad. Sci. U.S.A. 100 (2): 443–8. doi: . PMID 12522270.
- Yokoyama N, Miller WT (2004). "Biochemical properties of the Cdc42-associated tyrosine kinase ACK1. Substrate specificity, authphosphorylation, and interaction with Hck.". J. Biol. Chem. 278 (48): 47713–23. doi: . PMID 14506255.
- Ahmed I, Calle Y, Sayed MA, et al. (2004). "Cdc42-dependent nuclear translocation of non-receptor tyrosine kinase, ACK.". Biochem. Biophys. Res. Commun. 314 (2): 571–9. PMID 14733946.
- Gu Y, Lin Q, Childress C, Yang W (2004). "Identification of the region in Cdc42 that confers the binding specificity to activated Cdc42-associated kinase.". J. Biol. Chem. 279 (29): 30507–13. doi: . PMID 15123659.
- Brandenberger R, Wei H, Zhang S, et al. (2005). "Transcriptome characterization elucidates signaling networks that control human ES cell growth and differentiation.". Nat. Biotechnol. 22 (6): 707–16. doi: . PMID 15146197.
- Lougheed JC, Chen RH, Mak P, Stout TJ (2004). "Crystal structures of the phosphorylated and unphosphorylated kinase domains of the Cdc42-associated tyrosine kinase ACK1.". J. Biol. Chem. 279 (42): 44039–45. doi: . PMID 15308621.