Talk:Third law of thermodynamics

From Wikipedia, the free encyclopedia

WikiProject Physics This article is within the scope of WikiProject Physics, which collaborates on articles related to physics.
Start This article has been rated as start-Class on the assessment scale.
Mid This article is on a subject of mid importance within physics.

Help with this template This article has been rated but has no comments. If appropriate, please review the article and leave comments here to identify the strengths and weaknesses of the article and what work it will need.

WikiProject Chemistry This article is within the scope of WikiProject Chemistry, which collaborates on Chemistry and related subjects on Wikipedia. To participate, help improve this article or visit the project page for details on the project.
Start This article has been rated as Start-Class on the quality scale.
Top This article has been rated as Top-importance on the importance scale.

Article Grading: The article has been rated for quality and/or importance but has no comments yet. If appropriate, please review the article and then leave comments here to identify the strengths and weaknesses of the article and what work it will need.


[edit] Reverting ZAT notation

An anon user put in the following:

The third law of thermodynamics (hereinafter "Third Law") states that "as a system approaches the zero absolute temperature (hereinafter "ZAT"), all processes cease and the entropy of the system approaches a minimum value. That minimum value is zero in the case of a perfect crystalline substance. Succinct statements of the Third Law include:
  • All the temperature of a system approaches ZAT, all processes cease;
  • As temperature goes to ZAT, the entropy of a system approaches a constant.

I have reverted this contribution based on the opinion that: (1) the style-format is very poor and (2) no thermodynamics texts use this format.--Sadi Carnot 20:47, 24 April 2006 (UTC)

[edit] Query

I have been redirected to this page when searching for "Nernst Heat theorem". I am trying to understand this theorem in the form quoted by Planck on page 133 of his book "The theory of heat radiation". There the theorem is written in form of a characteristic function of an ideal gas and in terms of Nernst's chemical constant. I would also like to know what does this constant represent.--R vardavas 09:09, 11 November 2006 (UTC)

[edit] Fixing classical-quantum confusion

I have made one major change and two minor changes. The major change as to eliminate a discussion contrasting classical and quantum systems in the T=0 limit. The discussion was not just wrong, it was almost exactly the opposite of the truth. Zero-point motion is a property of unique quantum states, and thus makes no contribution whatsoever to entropy. The minor fixes were: 1. to include the Kramers degeneracy. 2. To eliminate a nonsense sentence about how non-equilibrium defects represent the second law at work (opposite of the truth) and replace it with a somewhat clarified discussion of the role of non-equilibrium entropy. There's plenty of room left for further clarifications and for links to other relevant physics and chemistry. Also, in my opinion, the separate discussion of magnetic systems, etc., actually decreases the clarity of the presentation. However, as a new editor I wanted to do a minimal revision for now.--Mbweissman 15:11, 23 December 2006 (CST)