Tau-function

From Wikipedia, the free encyclopedia

The Ramanujan tau function is the function \tau:\mathbb{N}\to\mathbb{Z} defined by the following identity:

\sum_{n\geq 1}\tau(n)q^n=q\prod_{n\geq 1}(1-q^n)^{24}.

The first few values of the tau function are given in the following table (sequence A000594 in OEIS):

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
τ(n) 1 −24 252 −1472 4830 −6048 −16744 84480 −113643 −115920 534612 −370944 −577738 401856 1217160 987136

If one substitutes q = exp(2πiz) with z\in\mathfrak{h}=\{z \in \mathbb{C} : \Im z > 0\} then the function \Delta(z):\mathfrak{h}\to\mathbb{C} defined by

\Delta(z)=\sum_{n\geq 1}\tau(n)q^n

is a holomorphic cusp form of weight 12 and level 1, known as the discriminant modular form.

Ramanujan observed, but could not prove, the following three properties of τ(n):

  • τ(mn) = τ(m)τ(n) if gcd(m,n) = 1 (meaning that τ(n) is a multiplicative function)
  • τ(pr + 1) = τ(p)τ(pr) − p11τ(pr − 1) for p prime and r\in\mathbb{Z}_{>0}
  • |\tau(p)| \leq 2p^{11/2} for all primes p.

The first two properties were proved by Mordell in 1917 and the third one was proved by Deligne in 1974.

[edit] Congruences for the tau function

For k\in\mathbb{Z} and n\in\mathbb{Z}_{>0}, define σk(n) as the sum of the k-th powers of the divisors of n. The tau functions satisfies several congruence relations; many of them can be expressed in terms of σk(n). Here are some:

\tau(n)\equiv\sigma_{11}(n)\ \bmod\ 2^{11}\mbox{ for }n\equiv 1\ \bmod\ 8
\tau(n)\equiv 1217\sigma_{11}(n)\ \bmod\  2^{13}\mbox{ for } n\equiv 3\ \bmod\ 8
\tau(n)\equiv 1537\sigma_{11}(n)\ \bmod\ 2^{12}\mbox{ for }n\equiv 5\ \bmod\ 8
\tau(n)\equiv 705\sigma_{11}(n)\ \bmod\ 2^{14}\mbox{ for }n\equiv 7\ \bmod\ 8
\tau(n)\equiv n^{-610}\sigma_{1231}(n)\ \bmod\ 3^{6}\mbox{ for }n\equiv 1\ \bmod\ 3
\tau(n)\equiv n^{-610}\sigma_{1231}(n)\ \bmod\ 3^{7}\mbox{ for }n\equiv 2\ \bmod\ 3
\tau(n)\equiv n^{-30}\sigma_{71}(n)\ \bmod\ 5^{3}\mbox{ for }n\not\equiv 0\ \bmod\ 5
\tau(n)\equiv n\sigma_{9}(n)\ \bmod\ 7\mbox{ for }n\equiv 0,1,2,4\ \bmod\ 7
\tau(n)\equiv n\sigma_{9}(n)\ \bmod\ 7^2\mbox{ for }n\equiv 3,5,6\ \bmod\ 7
\tau(n)\equiv\sigma_{11}(n)\ \bmod\ 691.

For p\not=23 prime, we have

\tau(p)\equiv 0\ \bmod\ 23\mbox{ if }\left(\frac{p}{23}\right)=-1
\tau(p)\equiv \sigma_{11}(p)\ \bmod\ 23^2\mbox{ if } p\mbox{ is of the form } a^2+23b^2
\tau(p)\equiv -1\ \bmod\ 23\mbox{ otherwise}.
Languages