[edit] Summary
Illustration for article en:Tangent half-angle formula. Created by Gustavb using Euklides.
[edit] Licensing
I, the copyright holder of this work, have published or hereby publish it under the following license:
|
[edit] Source
[edit] Tangent_half-angle_formula.euk
box(-1.6, -1.6, 1.6, 1.6, 2.5)
thickness(.8)
% Axis
X1 = point(-1.7, 0); X2 = point(1.6, 0)
Y1 = point(0, -1.7); Y2 = point(0, 1.6)
color(darkgray);
draw(segment(X1,X2), full, arrow)
draw(segment(Y1,Y2), full, arrow)
color(black);
O = point(0,0); % origo
% Unit circle
A = point(-1,0); B = point(1,0)
C = circle(A, B)
% Angle
phi interactive(48, -3, -180, 180, "", right)
P = point(C, phi:)
% Where A->P intersects the Y-axis
I = intersection(line(A,P), line(Y1,Y2))
% P projected on X-axis
D = projection(P,line(X1,X2));
draw(C);
draw(P); draw(O,P)
draw(A); draw(I)
mark(B,O,P, simple, .5)
mark(O,A,P, simple, .6)
mark(D,P,B, simple, .6)
thickness(1.3); draw(line(A,P))
thickness(1.0); draw(P,D,A); draw(P,D,B)
% Draw labels
draw("$(0, t)$",I,.1,140:)
draw("$(-1,0)$",A,.08,145:)
draw("$\varphi$",O,.3,20:)
draw("$\varphi/2$",A,.4,13:)
draw("$\varphi \over 2$",P,.35,-78:)
draw("$(\cos \varphi,\sin \varphi)$",P,.15,-12:)
draw("$y$",Y2,.1,-30:); draw("$x$",X2,.1,-130:)
[edit] Instructions
- Create EPS
$ euk2eps Tangent_half-angle_formula.euk
- Outline fonts
$ eps2eps -dNOCACHE Tangent_half-angle_formula.eps Tangent_half-angle_formula2.eps
- Fix bounding box
$ ps2epsi Tangent_half-angle_formula2.eps Tangent_half-angle_formula.eps
- Convert to Sketch
$ pstoedit -f sk Tangent_half-angle_formula.eps Tangent_half-angle_formula.sk
- Convert to SVG
$ skconvert Tangent_half-angle_formula.sk Tangent_half-angle_formula.svg
- Fix Tangent_half-angle_formula.svg with Inkscape
Click on a date/time to view the file as it appeared at that time.
The following pages on the English Wikipedia link to this file (pages on other projects are not listed):