Table of polyhedron dihedral angles

From Wikipedia, the free encyclopedia

The dihedral angles for the edge-transitive polyhedra are:

Picture Name Schläfli
symbol
Vertex/Face
configuration
exact dihedral angle
(radians)
approximate
dihedral angle
(degrees)
Platonic solids (regular convex)
Tetrahedron {3,3} (3)3 arccos(1/3) 70.53°
Hexahedron or Cube {4,3} (4)3 π/2 90°
Octahedron {3,4} (3)4 π − arccos(1/3) 109.47°
Dodecahedron {5,3} (5)3 π − arctan(2) 116.56°
Icosahedron {3,5} (3)5 π − arccos(√5/3) 138.19°
Kepler-Poinsot solids (regular nonconvex)
Small stellated dodecahedron {5/2,5} (5/2)5 π − arctan(2) 116.56°
Great dodecahedron {5,5/2} (5)5/2 arctan(2) 63.435°
Great stellated dodecahedron {5/2,3} (5/2)3 arctan(2) 63.435°
Great icosahedron {3,5/2} (3)5/2 arcsin(2/3) 41.810°
Quasiregular solids (Rectified regular)
Tetratetrahedron \begin{Bmatrix} 3 \\ 3 \end{Bmatrix} (3.3.3.3) π − arccos(1/3) 109.47°
Cuboctahedron \begin{Bmatrix} 3 \\ 4 \end{Bmatrix} (3.4.3.4) π − arccos(1/sqrt(3)) 125.264°
Icosidodecahedron \begin{Bmatrix} 3 \\ 5 \end{Bmatrix} (3.5.3.5)  \pi - \arccos{ ( \sqrt{ \frac{ (5 + 2\sqrt 5)}{15} } ) } 142.623°
Dodecadodecahedron \begin{Bmatrix} 5/2 \\ 5 \end{Bmatrix} (5.5/2.5.5/2)
Great icosidodecahedron \begin{Bmatrix} 5/2 \\ 3 \end{Bmatrix} (3.5/2.3.5/2)
Quasiregular dual solids
Dual of tetratetrahedron - V(3.3.3.3) π − π/2 90°
Rhombic dodecahedron
(Dual of cuboctahedron)
- V(3.4.3.4) π − π/3 120°
Rhombic triacontahedron
(Dual of icosidodecahedron)
- V(3.5.3.5) π − π/5 144°

[edit] References

  • Coxeter, Regular Polytopes (1963), Macmillian Company
    • Regular Polytopes, (3rd edition, 1973), Dover edition, ISBN 0-486-61480-8 (Table I: Regular Polytopes, (i) The nine regular polyhedra {p,q} in ordinary space)
  • Williams, Robert (1979). The Geometrical Foundation of Natural Structure: A Source Book of Design. Dover Publications, Inc. ISBN 0-486-23729-X.  (Section 3-7 to 3-9)