From Wikipedia, the free encyclopedia
This is a table of Clebsch-Gordan coefficients used for adding angular momentum values in quantum mechanics. The overall sign of the coefficients for each set of constant j1, j2, j is arbitrary to some degree and has been fixed according to the Condon-Shortley and Wigner sign convention as discussed by Baird and Biedenharn [1]. Tables with the same sign convention may be found in the Particle Data Group's Review of Particle Properties [2] and in online tables. [3].
Contents
- 1 Formulation
- 2 j1=1/2, j2=1/2
- 3 j1=1, j2=1/2
- 4 j1=1, j2=1
- 5 j1=3/2, j2=1/2
- 6 j1=3/2, j2=1
- 7 j1=3/2, j2=3/2
- 8 j1=2, j2=1/2
- 9 j1=2, j2=1
- 10 j1=2, j2=3/2
- 11 j1=2, j2=2
- 12 j1=5/2, j2=1/2
- 13 j1=5/2, j2=1
- 14 j1=5/2, j2=3/2
- 15 j1=5/2, j2=2
- 16 References
- 17 External links
|
[edit] Formulation
The Clebsch-Gordan coefficients are the solutions to
- ,
explicitly
The summation is extended over all integral k for which the argument of every factorial is nonnegative.[4]
For brevity, solutions with m < 0 are omitted. They may be calculated using the relation
- .
[edit] j1=1/2, j2=1/2
m=1 |
j= |
m1, m2= |
|
1 |
1/2, 1/2 |
|
|
[edit] j1=1, j2=1/2
m=3/2 |
j= |
m1, m2= |
|
3/2 |
1, 1/2 |
|
|
[edit] j1=1, j2=1
m=2 |
j= |
m1, m2= |
|
2 |
1, 1 |
|
|
[edit] j1=3/2, j2=1/2
m=2 |
j= |
m1, m2= |
|
2 |
3/2, 1/2 |
|
|
[edit] j1=3/2, j2=1
m=5/2 |
j= |
m1, m2= |
|
5/2 |
3/2, 1 |
|
|
m=1/2 |
j= |
m1, m2= |
|
5/2 |
3/2 |
1/2 |
3/2, -1 |
|
|
|
1/2, 0 |
|
|
|
-1/2, 1 |
|
|
|
|
[edit] j1=3/2, j2=3/2
m=3 |
j= |
m1, m2= |
|
3 |
3/2, 3/2 |
|
|
m=1 |
j= |
m1, m2= |
|
3 |
2 |
1 |
3/2, -1/2 |
|
|
|
1/2, 1/2 |
|
|
|
-1/2, 3/2 |
|
|
|
|
m=0 |
j= |
m1, m2= |
|
3 |
2 |
1 |
0 |
3/2, -3/2 |
|
|
|
|
1/2, -1/2 |
|
|
|
|
-1/2, 1/2 |
|
|
|
|
-3/2, 3/2 |
|
|
|
|
|
[edit] j1=2, j2=1/2
m=5/2 |
j= |
m1, m2= |
|
5/2 |
2, 1/2 |
|
|
[edit] j1=2, j2=1
m=3 |
j= |
m1, m2= |
|
3 |
2, 1 |
|
|
[edit] j1=2, j2=3/2
m=7/2 |
j= |
m1, m2= |
|
7/2 |
2, 3/2 |
|
|
m=3/2 |
j= |
m1, m2= |
|
7/2 |
5/2 |
3/2 |
2, -1/2 |
|
|
|
1, 1/2 |
|
|
|
0, 3/2 |
|
|
|
|
m=1/2 |
j= |
m1, m2= |
|
7/2 |
5/2 |
3/2 |
1/2 |
2, -3/2 |
|
|
|
|
1, -1/2 |
|
|
|
|
0, 1/2 |
|
|
|
|
-1, 3/2 |
|
|
|
|
|
[edit] j1=2, j2=2
m=4 |
j= |
m1, m2= |
|
4 |
2, 2 |
|
|
m=1 |
j= |
m1, m2= |
|
4 |
3 |
2 |
1 |
2, -1 |
|
|
|
|
1, 0 |
|
|
|
|
0, 1 |
|
|
|
|
-1, 2 |
|
|
|
|
|
m=0 |
j= |
m1, m2= |
|
4 |
3 |
2 |
1 |
0 |
2, -2 |
|
|
|
|
|
1, -1 |
|
|
|
|
|
0, 0 |
|
|
|
|
|
-1, 1 |
|
|
|
|
|
-2, 2 |
|
|
|
|
|
|
[edit] j1=5/2, j2=1/2
m=3 |
j= |
m1, m2= |
|
3 |
5/2, 1/2 |
|
|
[edit] j1=5/2, j2=1
m=7/2 |
j= |
m1, m2= |
|
7/2 |
5/2, 1 |
|
|
m=3/2 |
j= |
m1, m2= |
|
7/2 |
5/2 |
3/2 |
5/2, -1 |
|
|
|
3/2, 0 |
|
|
|
1/2, 1 |
|
|
|
|
m=1/2 |
j= |
m1, m2= |
|
7/2 |
5/2 |
3/2 |
3/2, -1 |
|
|
|
1/2, 0 |
|
|
|
-1/2, 1 |
|
|
|
|
[edit] j1=5/2, j2=3/2
m=4 |
j= |
m1, m2= |
|
4 |
5/2, 3/2 |
|
|
m=2 |
j= |
m1, m2= |
|
4 |
3 |
2 |
5/2, -1/2 |
|
|
|
3/2, 1/2 |
|
|
|
1/2, 3/2 |
|
|
|
|
m=1 |
j= |
m1, m2= |
|
4 |
3 |
2 |
1 |
5/2, -3/2 |
|
|
|
|
3/2, -1/2 |
|
|
|
|
1/2, 1/2 |
|
|
|
|
-1/2, 3/2 |
|
|
|
|
|
m=0 |
j= |
m1, m2= |
|
4 |
3 |
2 |
1 |
3/2, -3/2 |
|
|
|
|
1/2, -1/2 |
|
|
|
|
-1/2, 1/2 |
|
|
|
|
-3/2, 3/2 |
|
|
|
|
|
[edit] j1=5/2, j2=2
m=9/2 |
j= |
m1, m2= |
|
9/2 |
5/2, 2 |
|
|
m=5/2 |
j= |
m1, m2= |
|
9/2 |
7/2 |
5/2 |
5/2, 0 |
|
|
|
3/2, 1 |
|
|
|
1/2, 2 |
|
|
|
|
m=3/2 |
j= |
m1, m2= |
|
9/2 |
7/2 |
5/2 |
3/2 |
5/2, -1 |
|
|
|
|
3/2, 0 |
|
|
|
|
1/2, 1 |
|
|
|
|
-1/2, 2 |
|
|
|
|
|
m=1/2 |
j= |
m1, m2= |
|
9/2 |
7/2 |
5/2 |
3/2 |
1/2 |
5/2, -2 |
|
|
|
|
|
3/2, -1 |
|
|
|
|
|
1/2, 0 |
|
|
|
|
|
-1/2, 1 |
|
|
|
|
|
-3/2, 2 |
|
|
|
|
|
|
[edit] References
- ^ Baird, C.E.; L. C. Biedenharn (October 1964). "On the Representations of the Semisimple Lie Groups. III. The Explicit Conjugation Operation for SUn". J. Math. Phys. 5: 1723–1730. doi:10.1063/1.1704095.
- ^ Hagiwara, K.; et al. (July 2002). "Review of Particle Properties" (PDF). Phys. Rev. D 66: 010001. doi:10.1103/PhysRevD.66.010001.
- ^ Mathar, Richard J. (2006-08-14). SO(3) Clebsch Gordan coefficients (text). Retrieved on 2007-12-20.
- ^ (2.41), p. 172, Quantum Mechanics: Foundations and Applications, Arno Bohm, M. Loewe, New York: Springer-Verlag, 3rd ed., 1993, ISBN 0387953302.
[edit] External links