Szász-Mirakyan operator
From Wikipedia, the free encyclopedia
In functional analysis, a discipline within mathematics, the Szász-Mirakjan[1] operators are generalizations of Bernstein polynomials to infinite intervals. They are defined by
Contents |
[edit] Basic results
In 1964, Cheney and Sharma showed that if f is convex and non-linear, the sequence decreases with n ().[4] They also showed that if f is a polynomial of degree , then so is for all n.
A converse of the first property was shown by Horová in 1968 (Altomare & Campiti 1994:350).
[edit] Theorem on convergence
In Szász's original paper, he proved the following:
-
- If f is continuous on , then converges uniformly to f as .[2]
This is analogous to a theorem stating that Bernstein polynomials approximate continuous functions on [0,1].
[edit] Generalizations
A Kantorovich-type generalization is sometimes discussed in the literature. These generalizations are also called the Szász-Mirakyan-Kantorovich operators.
In 1976, C. P. May showed that the Baskakov operators can reduce to the Szász-Mirakyan operators.[5]
[edit] References
- Altomare, Francesco; Michele Campiti (1994). Korovkin-Type Approximation Theory and Its Applications. Walter de Gruyter. ISBN 3110141787.
- Favard, Jean (1944). "Sur les multiplicateurs d'interpolation". Journal de Mathematiques Pures et Appliquees 23 (9): 219–247. (French) (Also see Favard operators)
- Horová, Ivana (1968). "Linear positive operators of convex functions". Mathematica (Cluj) 10 (33): 275–283. Zbl 0186.11101.
- Kac, Mark (1938). "Une remarque sur les polynomes de M. S. Bernstein". Studia Mathematica 7: 49–51. Zbl 0018.20704. (French)
- Kac, Mark (1939). "Reconnaissance de priorité relative à ma note 'Une remarque sur les polynomes de M. S. Bernstein'". Studia Mathematica 8: 170. JFM 65.0248.03. (French)
- Mirakjan, G. M. (1941). "Approximation of continuous functions with the aid of polynomials of the form (French: Approximation des fonctions continues au moyen de polynômes de la forme )". Proceedings of the USSR Academy of Sciences 31: 201-205. JFM 67.0216.03. (French)
- Wood, B. (July 1969). "Generalized Szasz operators for the approximation in the complex domain". SIAM Journal on Applied Mathematics 17 (4): 790–801. doi: . Zbl 0182.08801.
[edit] Footnotes
- ^ Also spelled Mirakyan and Mirakian
- ^ a b Szász, Otto (1950). "Generalizations of S. Bernstein's polynomials to the infinite interval". Journal of Research of the National Bureau of Standards 45 (3): 239–245.
- ^ Walczak, Zbigniew (2003). "On modified Szasz-Mirakyan operators". Novi Sad Journal of Mathematics 33 (1): 93–107.
- ^ Cheney, Edward W.; A. Sharma (1964). "Bernstein power series". Canadian Journal of Mathematics 16 (2): 241–252.
- ^ May, C. P. (1976). "Saturation and inverse theorems for combinations of a class of exponential-type operators". Canadian Journal of Mathematics 28 (6): 1224–1250.