Superconformal algebra
From Wikipedia, the free encyclopedia
In theoretical physics, the superconformal algebra is a graded Lie algebra or superalgebra that combines the conformal algebra and supersymmetry. It generates the superconformal group in some cases (In two Euclidean dimensions, the Lie superalgebra doesn't generate any Lie supergroup.).
In two dimensions, the superconformal algebra is infinite-dimensional. In higher dimensions, there is a finite number of known examples of superconformal algebras.
Contents |
[edit] Superconformal algebra in 3+1D
According to [1] [2], the superconformal algebra in 3+1D is given by the bosonic generators Pμ, D, Mμν, Kμ, the U(1) R-symmetry A and the SU(N) R-symmetry and the fermionic generators Qαi, , and . denote spacetime indices, left-handed Weyl spinor indices and right-handed Weyl spinor indices, and the internal R-symmetry indices.
The Lie superbrackets are given by
- [Mμν,Mρσ] = ηνρMμσ − ημρMνσ + ηνσMρμ − ημσMρν
- [Mμν,Pρ] = ηνρPμ − ημρPν
- [Mμν,Kρ] = ηνρKμ − ημρKν
- [Mμν,D] = 0
- [D,Pρ] = − Pρ
- [D,Kρ] = + Kρ
- [Pμ,Kν] = − 2Mμν + 2ημνD
- [Kn,Km] = 0
- [Pn,Pm] = 0
This is the bosonic conformal algebra. Here, η is the Minkowski metric.
- [A,M] = [A,D] = [A,P] = [A,K] = 0
- [T,M] = [T,D] = [T,P] = [T,K] = 0
The bosonic conformal generators do not carry any R-charges.
But the fermionic generators do.
Tells us how the fermionic generators transform under bosonic conformal transformations.
[edit] Superconformal algebra in 2D
See super Virasoro algebra. There are two possible algebras; a Neveu-Schwarz algebra and a Ramond algebra.
[edit] References
- ^ West, Peter C. (1997), "Introduction to rigid supersymmetric theories", <http://arxiv.org/abs/hep-th/9805055>
- ^ [[Sylvester Gates |Gates, S. J.]]; [[Marcus Grisaru |Grisaru, Marcus T.]]; Rocek, M. & Siegel, W. (1983), “Superspace, or one thousand and one lessons in supersymmetry”, Front. Phys. 58: 1-548, <http://arxiv.org/abs/hep-th/0108200>
[edit] See also
- conformal symmetry
- SUSY algebra
- Super Virasoro algebra