SUMO3

From Wikipedia, the free encyclopedia


SMT3 suppressor of mif two 3 homolog 3 (S. cerevisiae)
PDB rendering based on 1u4a.
Available structures: 1u4a, 1wm2, 1wm3, 1wz0, 2awt, 2ckh, 2d07, 2io0, 2io1, 2io3, 2iyd
Identifiers
Symbol(s) SUMO3; SMT3A; SMT3H1; SUMO-3
External IDs OMIM: 602231 MGI1336201 HomoloGene38251
RNA expression pattern

More reference expression data

Orthologs
Human Mouse
Entrez 6612 20610
Ensembl ENSG00000184900 ENSMUSG00000020265
Uniprot P55854 Q9Z172
Refseq NM_006936 (mRNA)
NP_008867 (protein)
NM_019929 (mRNA)
NP_064313 (protein)
Location Chr 21: 45.05 - 45.06 Mb Chr 10: 77.05 - 77.06 Mb
Pubmed search [1] [2]

SMT3 suppressor of mif two 3 homolog 3 (S. cerevisiae), also known as SUMO3, is a human gene.[1]

SUMO proteins, such as SUMO3, and ubiquitin (see MIM 191339) posttranslationally modify numerous cellular proteins and affect their metabolism and function. However, unlike ubiquitination, which targets proteins for degradation, sumoylation participates in a number of cellular processes, such as nuclear transport, transcriptional regulation, apoptosis, and protein stability (Su and Li, 2002).[supplied by OMIM][1]

[edit] References

[edit] Further reading

  • Maruyama K, Sugano S (1994). "Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides.". Gene 138 (1-2): 171–4. PMID 8125298. 
  • Lapenta V, Chiurazzi P, van der Spek P, et al. (1997). "SMT3A, a human homologue of the S. cerevisiae SMT3 gene, maps to chromosome 21qter and defines a novel gene family.". Genomics 40 (2): 362–6. doi:10.1006/geno.1996.4556. PMID 9119407. 
  • Suzuki Y, Yoshitomo-Nakagawa K, Maruyama K, et al. (1997). "Construction and characterization of a full length-enriched and a 5'-end-enriched cDNA library.". Gene 200 (1-2): 149–56. PMID 9373149. 
  • Saitoh H, Hinchey J (2000). "Functional heterogeneity of small ubiquitin-related protein modifiers SUMO-1 versus SUMO-2/3.". J. Biol. Chem. 275 (9): 6252–8. PMID 10692421. 
  • Hattori M, Fujiyama A, Taylor TD, et al. (2000). "The DNA sequence of human chromosome 21.". Nature 405 (6784): 311–9. doi:10.1038/35012518. PMID 10830953. 
  • Tatham MH, Jaffray E, Vaughan OA, et al. (2001). "Polymeric chains of SUMO-2 and SUMO-3 are conjugated to protein substrates by SAE1/SAE2 and Ubc9.". J. Biol. Chem. 276 (38): 35368–74. doi:10.1074/jbc.M104214200. PMID 11451954. 
  • Lin J, Johannsen E, Robertson E, Kieff E (2002). "Epstein-Barr virus nuclear antigen 3C putative repression domain mediates coactivation of the LMP1 promoter with EBNA-2.". J. Virol. 76 (1): 232–42. PMID 11739688. 
  • Kadoya T, Yamamoto H, Suzuki T, et al. (2002). "Desumoylation activity of Axam, a novel Axin-binding protein, is involved in downregulation of beta-catenin.". Mol. Cell. Biol. 22 (11): 3803–19. PMID 11997515. 
  • Su HL, Li SS (2003). "Molecular features of human ubiquitin-like SUMO genes and their encoded proteins.". Gene 296 (1-2): 65–73. PMID 12383504. 
  • Strausberg RL, Feingold EA, Grouse LH, et al. (2003). "Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences.". Proc. Natl. Acad. Sci. U.S.A. 99 (26): 16899–903. doi:10.1073/pnas.242603899. PMID 12477932. 
  • Subramanian L, Benson MD, Iñiguez-Lluhí JA (2003). "A synergy control motif within the attenuator domain of CCAAT/enhancer-binding protein alpha inhibits transcriptional synergy through its PIASy-enhanced modification by SUMO-1 or SUMO-3.". J. Biol. Chem. 278 (11): 9134–41. doi:10.1074/jbc.M210440200. PMID 12511558. 
  • Eaton EM, Sealy L (2003). "Modification of CCAAT/enhancer-binding protein-beta by the small ubiquitin-like modifier (SUMO) family members, SUMO-2 and SUMO-3.". J. Biol. Chem. 278 (35): 33416–21. doi:10.1074/jbc.M305680200. PMID 12810706. 
  • Tatham MH, Kim S, Yu B, et al. (2003). "Role of an N-terminal site of Ubc9 in SUMO-1, -2, and -3 binding and conjugation.". Biochemistry 42 (33): 9959–69. doi:10.1021/bi0345283. PMID 12924945. 
  • Dobreva G, Dambacher J, Grosschedl R (2004). "SUMO modification of a novel MAR-binding protein, SATB2, modulates immunoglobulin mu gene expression.". Genes Dev. 17 (24): 3048–61. doi:10.1101/gad.1153003. PMID 14701874. 
  • Reverter D, Lima CD (2005). "A basis for SUMO protease specificity provided by analysis of human Senp2 and a Senp2-SUMO complex.". Structure 12 (8): 1519–31. doi:10.1016/j.str.2004.05.023. PMID 15296745. 
  • Ayaydin F, Dasso M (2005). "Distinct in vivo dynamics of vertebrate SUMO paralogues.". Mol. Biol. Cell 15 (12): 5208–18. doi:10.1091/mbc.E04-07-0589. PMID 15456902. 
  • Xu Z, Au SW (2005). "Mapping residues of SUMO precursors essential in differential maturation by SUMO-specific protease, SENP1.". Biochem. J. 386 (Pt 2): 325–30. doi:10.1042/BJ20041210. PMID 15487983. 
  • Gerhard DS, Wagner L, Feingold EA, et al. (2004). "The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC).". Genome Res. 14 (10B): 2121–7. doi:10.1101/gr.2596504. PMID 15489334. 
  • Ding H, Xu Y, Chen Q, et al. (2005). "Solution structure of human SUMO-3 C47S and its binding surface for Ubc9.". Biochemistry 44 (8): 2790–9. doi:10.1021/bi0477586. PMID 15723523. 
  • Bossis G, Malnou CE, Farras R, et al. (2005). "Down-regulation of c-Fos/c-Jun AP-1 dimer activity by sumoylation.". Mol. Cell. Biol. 25 (16): 6964–79. doi:10.1128/MCB.25.16.6964-6979.2005. PMID 16055710.