Subgroup
From Wikipedia, the free encyclopedia
Basic notions in group theory | ||||
category of groups | ||||
---|---|---|---|---|
subgroups, normal subgroups | ||||
quotient groups | ||||
group homomorphisms, kernel, image | ||||
(semi-)direct product, direct sum | ||||
types of groups | ||||
finite, infinite | ||||
discrete, continuous | ||||
multiplicative, additive | ||||
abelian, cyclic, simple, solvable |
In group theory, given a group G under a binary operation *, we say that some subset H of G is a subgroup of G if H also forms a group under the operation *. More precisely, H is a subgroup of G if the restriction of * to H is a group operation on H. This is usually represented notationally by H ≤ G, read as "H is a subgroup of G".
A proper subgroup of a group G is a subgroup H which is a proper subset of G (i.e. H ≠ G). The trivial subgroup of any group is the subgroup {e} consisting of just the identity element. If H is a subgroup of G, then G is sometimes called an overgroup of H.
The same definitions apply more generally when G is an arbitrary semigroup, but this article will only deal with subgroups of groups. The group G is sometimes denoted by the ordered pair (G,*), usually to emphasize the operation * when G carries multiple algebraic or other structures.
In the following, we follow the usual convention of dropping * and writing the product a*b as simply ab.
Contents |
[edit] Basic properties of subgroups
- H is a subgroup of the group G if and only if it is nonempty and closed under products and inverses. (The closure conditions mean the following: whenever a and b are in H, then ab and a−1 are also in H. These two conditions can be combined into one equivalent condition: whenever a and b are in H, then ab−1 is also in H.) In the case that H is finite, then H is a subgroup if and only if H is closed under products. (In this case, every element a of H generates a finite cyclic subgroup of H, and the inverse of a is then a−1 = an − 1, where n is the order of a.)
- The above condition can be stated in terms of a homomorphism; that is, H is a subgroup of a group G if and only if H is a subset of G and there is an inclusion homomorphism (i.e., i(a) = a for every a) from H to G.
- The identity of a subgroup is the identity of the group: if G is a group with identity eG, and H is a subgroup of G with identity eH, then eH = eG.
- The inverse of an element in a subgroup is the inverse of the element in the group: if H is a subgroup of a group G, and a and b are elements of H such that ab = ba = eH, then ab = ba = eG.
- The intersection of subgroups A and B is again a subgroup. The union of subgroups A and B is a subgroup if and only if either A or B contains the other, since for example 2 and 3 are in the union of 2Z and 3Z but their sum 5 is not.
- If S is a subset of G, then there exists a minimum subgroup containing S, which can be found by taking the intersection of all of subgroups containing S; it is denoted by <S> and is said to be the subgroup generated by S. An element of G is in <S> if and only if it is a finite product of elements of S and their inverses.
- Every element a of a group G generates the cyclic subgroup <a>. If <a> is isomorphic to Z/nZ for some positive integer n, then n is the smallest positive integer for which an = e, and n is called the order of a. If <a> is isomorphic to Z, then a is said to have infinite order.
- The subgroups of any given group form a complete lattice under inclusion, called the lattice of subgroups. (While the infimum here is the usual set-theoretic intersection, the supremum of a set of subgroups is the subgroup generated by the set-theoretic union of the subgroups, not the set-theoretic union itself.) If e is the identity of G, then the trivial group {e} is the minimum subgroup of G, while the maximum subgroup is the group G itself.
[edit] Example
Let G be the abelian group whose elements are
- G={0,2,4,6,1,3,5,7}
and whose group operation is addition modulo eight. Its Cayley table is
+ | 0 | 2 | 4 | 6 | 1 | 3 | 5 | 7 |
---|---|---|---|---|---|---|---|---|
0 | 0 | 2 | 4 | 6 | 1 | 3 | 5 | 7 |
2 | 2 | 4 | 6 | 0 | 3 | 5 | 7 | 1 |
4 | 4 | 6 | 0 | 2 | 5 | 7 | 1 | 3 |
6 | 6 | 0 | 2 | 4 | 7 | 1 | 3 | 5 |
1 | 1 | 3 | 5 | 7 | 2 | 4 | 6 | 0 |
3 | 3 | 5 | 7 | 1 | 4 | 6 | 0 | 2 |
5 | 5 | 7 | 1 | 3 | 6 | 0 | 2 | 4 |
7 | 7 | 1 | 3 | 5 | 0 | 2 | 4 | 6 |
This group has a pair of nontrivial subgroups: J={0,4} and H={0,2,4,6}, where J is also a subgroup of H. The Cayley table for H is the top-left quadrant of the Cayley table for G. The group G is cyclic, and so are its subgroups. In general, subgroups of cyclic groups are also cyclic.
[edit] Cosets and Lagrange's theorem
Given a subgroup H and some a in G, we define the left coset aH = {ah : h in H}. Because a is invertible, the map φ : H → aH given by φ(h) = ah is a bijection. Furthermore, every element of G is contained in precisely one left coset of H; the left cosets are the equivalence classes corresponding to the equivalence relation a1 ~ a2 if and only if a1−1a2 is in H. The number of left cosets of H is called the index of H in G and is denoted by [G : H].
Lagrange's theorem states that for a finite group G and a subgroup H,
where |G| and |H| denote the orders of G and H, respectively. In particular, the order of every subgroup of G (and the order of every element of G) must be a divisor of |G|.
Right cosets are defined analogously: Ha = {ha : h in H}. They are also the equivalence classes for a suitable equivalence relation and their number is equal to [G : H].
If aH = Ha for every a in G, then H is said to be a normal subgroup. Every subgroup of index 2 is normal: the left cosets, and also the right cosets, are simply the subgroup and its complement.