Stengle's Positivstellensatz
From Wikipedia, the free encyclopedia
In mathematics, Stengle's Positivstellensatz characterizes polynomials which are positive on a given semialgebraic set over the real numbers, or more generally, any real-closed field. It can be thought of as an ordered analogue of Hilbert's Nullstellensatz. It was discovered by Gilbert Stengle.
[edit] Statement
Let R be a real-closed field, and F a finite set of polynomials over R in n variables. Let W be the semialgebraic set
and let C be the cone generated by F (i.e., the subsemiring of R[X1,…,Xn] generated by F and arbitrary squares). Let p ∈ R[X1,…,Xn] be a polynomial. Then
- if and only if .
The weak Positivstellensatz is the following variant of the Positivstellensatz. Let R be a real-closed field, and F, G, and H finite subsets of R[X1,…,Xn]. Let C be the cone generated by F, and I the ideal generated by G. Then
if and only if
(Unlike Nullstellensatz, the "weak" form actually includes the "strong" form as a special case, so the terminology is a misnomer.)
[edit] References
- G. Stengle, A Nullstellensatz and a Positivstellensatz in Semialgebraic Geometry, Mathematische Annalen 207 (1973), no. 2, pp. 87–97.
- J. Bochnak, M. Coste, M.-F. Roy, Real algebraic geometry, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, Bd. 36, Springer-Verlag, 1999.