User talk:Squirmymcphee

From Wikipedia, the free encyclopedia

Ask and you shall receive... Paul Maycock sent me his data free of charge and we even talked at length on the phone.User:Mrshaba/Experiments#PV Graph I wrote to Perlin today and I think he'll provide me with PV info for the early 70s or at least lead me in the right direction and clear up some inconsistencies. You seem new to WP but knowledgeable at the same time and you might be able to run with me judging from your posts. You might be able to outrun me... who knows... check out the info though. Mrshaba (talk) 17:44, 10 December 2007 (UTC)

Yes, I'm new to WP -- I didn't even realize I had a user talk page until I noticed a little blue "talk" next to my ID -- but I'm "in the business," as they say. I'm getting more comfortable around here, so I'm hoping to do less talking and more contributing before too long.--Squirmymcphee (talk) 22:29, 12 December 2007 (UTC)

I replied to your comments on the PV discussion page. Thanks for correcting my terminology. Maycock had to correct me on prices vs costs. I'd appreciate it if you can take a look at the price data. I'm doing my own cross check to make sure I converted current and constant dollars correctly but you might be able to eyeball the numbers. Mrshaba (talk) 20:28, 12 December 2007 (UTC)

Contents

[edit] The influence of semiconductors on progress in PV

Hi again Squirmy... I know I've been knocking on your door a lot lately so I hope you don't tire of my questions.

I think you might be working on a rewrite of the Solar Cell page so I figure you might be able to answer a question. I'm working on a rewrite of the photovoltaics section on the Solar energy page. I still need some more price numbers for the early 70s but I'll find them over the next few weeks. Thanks for the leads by the way. Most of the time I see the development of PV explained in stages... The space race stage, then the oil crises, the cheap oil years, the rebirth in the 90s and the modern explosion era. I've got these developments sketched out. One thing I'd like to give more weight to is the influence that semiconductor developments have had on the PV industry. To tell you the truth I'm mostly working off a gut feeling here but I don't think the influence of parallel development has been given proper weight. What do you think were the primary drivers of terrestrial PV in the early 70s just before the oil crises. I figure it partly had to do with NASA funds drying up and partly with semiconductor progress. Perlin gives most of the credit to Dr. Berman but I think at least part of Dr. Berman's success is attributable to timing. It seems to me progress in the semiconductor area has had an invisible positive influence on PV. How strong do you think this influence is?Mrshaba (talk) 18:40, 13 December 2007 (UTC)

I wouldn't say I'm working on a rewrite of the solar cell page, but I've noticed some errors and inconsistencies that I'm slowly trying to fix (for the most part I think it's a pretty decent page). I am seriously considering a top-to-bottom rewrite of World energy resources and consumption, though.
At any rate, while Perlin's book is interesting I think he sacrifices a lot of the big picture for the sake of storytelling. Have you read Solar Revolution by Travis Bradford? His coverage of the big picture is much better than Perlin's, though it probably goes a little farther in the opposite direction (too little detail) for what you want. He attributes a lot of the initial interest in PV to the first oil crisis in the early '70s -- up to then, to my knowledge, terrestrial PV was largely experimental. If you have access to the Proceedings of the IEEE Photovoltaic Specialists Conference from the late '60s and early '70s, you will find almost no mention of terrestrial PV until around the time of the first oil crisis (you'll probably have a hard time tracking those down, but honestly they don't really contain much of the information I think you're looking for). There's also no question that PV was embraced by the early environmental movement, though since PV was so expensive in those days their support was more a matter of policy than economics. You might also look for Harnessing Solar Power: The Photovoltaics Challenge by Ken Zweibel, which I first saw at a public library about 15 years ago. It's outdated, but as I recall it provides some historical context. For that matter, your best bet at a contemporary, 1970s viewpoint might be to dig up some of the many books on energy that were published in the late '70s.
As for the influence of semiconductor developments, I'm not aware of a good resource that summarizes it (though one may certainly exist). I think virtually everybody would agree, though, that the single largest influence is that it enabled silicon feedstock to be purified and sold cheaply. Perlin's book has a quote from Daryl Chapin (if I recally correctly) where he estimates the cost of a solar cell in the late '50s and says its high cost is due primarily to the high cost of silicon. Adjust Chapin's figure for inflation and compare it to the current price of silicon feedstock, which is roughly $75/kg (and can be sold profitably at $30/kg). I think you'll understand my point. Beyond that, the PV industry pretty much relied upon the methods and equipment developed by the microelectronics industry for quite a long time -- until you have the capital to develop your own equipment, there's not really much else you can do. That was good from the standpoint of keeping costs down, but it was bad in the sense that a lot of laboratory developments could not be transferred to the production line. That's changing a bit now -- the PV industry is flush with cash and has outgrown (quite literally) much of the microelectronics equipment it has grown up on. You now see companies like Centrotherm, Applied Materials, RENA, GT Solar, and Spire, to name a few, catering to the specific equipment needs of the PV industry, and that has enabled the industry to be more creative with its processes. So in a nutshell, I think the influence of the semiconductor industry has historically been very strong -- and I doubt you'll find many people in the PV industry who would disagree with that statement -- but I think it is beginning to diverge a bit from that path. I think the divergence will become greater with time, and I think the PV industry might eventually influence the semiconductor industry in positive ways (which it has already done via the wire saw for wafer slicing), but I don't think the influence will ever entirely disappear.--Squirmymcphee (talk) 20:00, 13 December 2007 (UTC)
Thanks for your response. I will read it several more times. I think we are like minded in how the development went down moreorless. Recently I purchased 21 bound copies of Solar Energy from the Ames Research Center. Unfortunately, the volumes don't overlap with the late 60s and early 70's but I do have the 65/66 volume. I found an interesting paper today: "Design of Solar Cells for Terrestrial Use" by Paul A. Berman (Senior Engineer, Heliotek, 1966). Here is a quote: "The cost per watt of present-day space power systems is about $1000 per watt, with the cost of the solar cells alone accounting for about 20 percent of the total. These systems, however, are subject to critical weight, area, and deployment considerations, which would not be necessary for terrestrial systems." The paper goes on to say if we do this, this and this we can get the cost down to $36/watt. The this, this and that had more to do with tailoring PV to terrestrial needs rather than space needs. The references listed provide a good trail to follow so I'll have plenty to keep me busy. I think this paper and the others it leads me to will make a good case for what the developers were thinking. I'm sure I'll find some references which mention semiconductor developments trickling down. If you happen to find anything shoot me a note.Mrshaba (talk) 00:33, 14 December 2007 (UTC)
I promise these are my last questions for the week. Are you an ISES member by chance? I've recently become a member but have had no luck finding any kind of message board for members. I have basic questions I want to ask. For example: I have this paper in my hand but I would like to know what other papers since published reference it. Sort of a reverse reference list. Do you know of a straight forward way to search for forward references? Mrshaba (talk) 05:16, 14 December 2007 (UTC)
I'm not a member of ISES. I used to be, but it was long ago enough that they barely had a web presence, let alone a message board. I am a member of ASES, which has done a lot of work on it's web site over the past year, but I haven't really explored it well enough to know if it includes message boards. As for finding papers that cite a particular paper, the best resource I've found for that is Google Scholar. It's probably incomplete, so I also tend to Google on the exact title of the paper (enclosed in double quotes) when doing such a search. Some journals do pretty rigorous tracking of who cites their articles, so you might also check the journal's web page if the paper is a journal article. There might also be some central clearinghouse that university libraries subscribe to -- I don't know for sure.--Squirmymcphee (talk) 16:12, 14 December 2007 (UTC)

[edit] Learning Curves

What puzzles me about Berman's info is that his Solar Power Corporation was the first dedicated terrestrial PV manufacturing company. His information doesn't represent just any data point - it's arguably the starting data point. I cannot disregard this data without an explanation. The data really bugs me.

Going back to 1967, Paul Berman (no relation to Elliot Berman), the Senior Engineer at Heliotek wrote an article for the Solar Energy journal entitled: Design of Solar Cells for Terrestrial Use. In six pages he outlined simple ways to bring down the cost per watt of PV. Several others had written similarly on this topic but SPC was the first to manufacture product according to these principles. The end result was that SPC economized PV by de-optimizing modules. What I find strange is that the price they achieved was 4 years ahead of the rest of the industry according to the data Maycock gave me.

Additionally, SPC delivered product before OPEC was a household name. Sailboat owners, lighthouse operators and Telecom Australia were buying from SPC before any subsidies or energy crises existed. These were practical consumers and this is an important note. How could SPC pick the low hanging fruit that many others had pointed out only to have module prices escalate three fold in the following years while production went up several hundred fold? To me, manufacturing volume doesn't explain this time period. The last several years are also an anomaly but I agree with your reasoning for this departure from the curve.

Learning curves are helpful as gross tools but they've been presented as prediction tools. Statements like: If we increase production by a factor of X we can get the cost down to Y. This is not true. It appears several ranges of data cannot be accurately explained by the learning curve model alone. All and all, I think the learning curve model should be applied conditionally. I will check out the paper by Nemet and I appreciate this reference.

I want to improve my understanding of the driving influences of PV over its history. I don't think boiling down individual characteristics into a mathematical expression is particularly useful. It gives you a synopsis but the story is better told by chapter. The thing that started this little conversation was the question of how to present the data graphically. You suggested a log-log scale. I've done that and also broken things into smaller linear chunks. Both methods work fine. I'm not trying to be hard headed with you regarding learning curves because you clearly know your stuff. I work in the energy field but on the opposite end.

I'm broadly interested in the solar energy field in addition to just PV. I'm starting to understand that solar energy statistics are out of whack. We don't put meters on our windows but this does not discount the sunlight that comes through them. I now see that solar energy forms the baseline for all the other energy inputs to stand on. The completely radical idea that has sprung into my mind is that civilization uses more solar energy than any other sort. I've never seen this idea in print... But as with all other decent ideas I've had I'm sure there are many many people who have put forth this idea.

Yes, skipping off subsidies like a rock on water. Floating on subsidies is probably a better way to put it. Subsidies and eventually the price of grid electricity will continue to buoy PV prices and costs. That's my prediction anyway... This is going to continue to throw off the learning curves' "predictions". If you'd like to continue this conversation off-line here's my email. It will be good for two more months. lakc@pge.com Mrshaba (talk) 04:42, 2 February 2008 (UTC)

I don't think you're being hard-headed at all -- debates like these are quite useful, and this discussion is quite similar to those I've had with others who are themselves in the PV industry. Plus, they force me to think about my own attitudes and assumptions instead of just lecturing others about them. :-) What drives the PV learning curve is a matter of great debate, and I think the only consensus on that matter is that the driver changes with time. To my knowledge, Nemet is the only one who has systematically tried to attribute learning rates to specific drivers (though the industry obviously tracks and discusses cost drivers outside of the context of the learning curve).
The Berman thing isn't as troubling to me as it evidently is to you. As now, I think a lot of the companies that entered the industry early on had their own ideas about how to reduce costs. Solarex, for example, likely had high production costs because they were dumping capital into developing the cast multicrystalline silicon process. I don't know that this was the case with Berman, but it is entirely possible that his focus was on immediate cost reduction while others took a longer view and invested in technologies they felt would better position them for the long term. I don't think this is so unusual for an industry in its infancy. I'm also fairly certain that some companies in those days were trying to minimize their expenditures by adapting processes for space cells to terrestrial cells, a strategy that didn't last very long but might have bumped average prices upward. Finally, Berman and his competitors were also not likely sharing cost information with one another, so his competitors might not have realized what the difference was. That said, one of the things I've never asked anybody about is precisely where these numbers come from, as I don't think there was any formal surveying of manufacturers in those days like there is now. I suspect Maycock based his numbers on information gathered in the course of administrating government research contracts, but I just don't know.
I would have to agree that one must be careful when using learning curves as prediction tools, and for exactly the reasons you cite. There's nothing fundamental about them, they are simply a convenient way to describe historical trends. That said, they have been applied over a wide range of industries and I am amazed by how infrequently major discontinuities occur. Plus, anybody making predictions about the future needs a basis on which to build the prediction and, for better or for worse, that generally means historical data. Forecasts based upon highly stable historical trends tend to be more believable than those based on pure speculation, no matter how educated and well supported the speculation might be.
As for using it to detect cost drivers, I think the learning curve is only useful for that if you approach it as a statistical tool. Unless you do something like Nemet did, using a statistically inspired approach to correlate it with industry changes and trends over time, I don't think it is very useful in that regard. I can't tell you how many conversations I've had with other engineers where we sat around asking each other, "why does the curve look like this and what does it mean?" Of course, by now I'm sure you're well familiar with this feeling.
Going back to the log-log scale, the reason I prefer it is twofold. First, it is familiar to anybody who has studied learning curves since their inception (in fact, the mathematical relationship was originally derived from the log-log plot). In that sense, it's like a word that everybody understands -- it's okay to use a different word to represent the same idea, as long as you understand you might have to do a little extra work to make sure everybody understands your definition. Second, because the mathematical relationship is so intimately tied to the graphical representation I find the log-log plot easier to interpret. As long as everybody is on the same page and linear-linear plots support your claims there's certainly no problem with representing the data that way.
I agree that solar energy statistics are underreported, and I think it has to do with the definition of "solar energy consumed," the ease of data collection, and the perceived role of solar in our energy portfolio. The statistics published by EIA, for example, only count power plants 1 MW or greater in size. This isn't a big deal for most energy technologies, but you can imagine the potential for PV and its multitude of installations measured in kW to be seriously underreported going forward (I'm told that DOE is thinking about ways to correct this). If you define passive solar heating of homes as "solar energy consumed" you have a data collection nightmare, but because of the way we perceive our energy consumption most people don't even think about it. And of course, if you expand your definition far enough then all of the fossil fuels we use are really solar....
Finally, I'm not convinced that grid power prices will "float" PV prices. If the PV industry is competitive, nothing will float it -- the only reason prices are stuck right now is because of the combination of subsidies and lack of competition, in my opinion. Furthermore, worldwide retail grid electricity rates span a range at least as wide as about 3.5 cents/kWh to more than 35 cents/kWh (and even higher, if you count time-of-use metering), so "the price of grid electricity" has a rather ambiguous value when you're talking about a global industry. I think that for the foreseeable future, no matter how big the PV industry gets there will always be somebody paying less for grid electricity; expanding PV supply, then, would have to entail a price reduction unless there is unmet demand among customers paying higher grid rates (in which case demand likely outstrips supply and we're back to where we are now).--Squirmymcphee (talk) 22:07, 4 February 2008 (UTC)

Thanks again for the lead on Nemet. Just the guy I was looking for. He points out that learning curve models should be used cautiously.

http://papers.ssrn.com/sol3/papers.cfm?abstract_id=946173

"This study examines the case of photovoltaics (PV)... The results indicate that learning from experience only weakly explains change in the most important cost-reducing factors— plant size, module efficiency, and the cost of silicon." Mrshaba (talk) 20:27, 2 February 2008 (UTC)

Have you had seen the complete paper or just the abstract? Just as a point of clarification I'll say that the paper is framed as an investigation to determine how much of the learning curve can be described as "learning by doing" and how much progress can be attributed to concrete technological and economic changes. The learning curve itself originated with an airplane factory that essentially made the same product over and over again for years. The owner of the plant noticed that his costs came down even though he hadn't made any substantial changes or improvements, and he attributed the improvement to efficiency gains made through his employees' learning how to streamline their work over the years -- hence the "learning by doing." Nemet contends that learning by doing has not been nearly as significant as increases in plant size and module efficiency, and reductions in the cost of silicon. It's not a surprising conclusion when you think about it, but the paper is notable for the way in which Nemet analyzes the learning curve.--Squirmymcphee (talk) 22:07, 4 February 2008 (UTC)
Thank you for the detailed response. I read through Nemet's white paper that I provided a link for above. It was about 27 pages plus an impressive list of references. It was impressive all around and I'll read more of Nemet's stuff when I get a chance. I would have liked more detail about silicon cost reductions in the 60s that set the stage for commercial PV in the 70s. I am still in search of this information because I figure silicon cost reductions helped push terrestrial PV to a threshold. Nemet pointed out that silicon costs are one of the primary drivers for PV price declines. I had already felt this and put it to Berman but he did not agree and responded that terrestrial PV happened because "we willed it". I can't argue with him because it's a wonderful response and it's possible silicon wasn't all that important during this time period but only acquired importance going forward. Interestingly, Bill Yerkes echoes the "we willed it" sentiment with his second lieutenant idea. Regardless of favorable or unfavorable conditions, things get done because people choose to attack a problem.
I asked Maycock and SU if their price numbers averaged together earth and space PV prices as this would have completely explained the data scatter. SU said in essence "we think so" and Maycock said he wasn't going to argue over one data point. Nevertheless, the averaging of earth and space PV prices is probably one of the main reasons for the scattering of prices and this follows your reasoning. So now I can start sleeping again. It makes sense that as space suppliers took more interest in the emerging earth market they didn't jump in with both feet as SPC did. You have to consider that they were perfectionists who had long lived off and by NASAs' lead and need. Maycock told me to ask Yerkes for more information so I'll do that. I'm also going to research Solarex and their early prices. These early prices concern me because they mark an important transition for PV into a real, relatively unsubsidized market. SPC had customers at a price of $20/Watt - summer cottages, lighthouses, navigation buoys and off-shore oil derricks. These customers shared remoteness in common and this made PV practical for them at $20/Watt. The point is, I want to be able to trust the price that made PV practical for these customers. That's why this data bothers me.
I'm thinking about the idea of PV islands. The basic idea is there are customers which can be grouped according to their unique characteristics. Germany might have near universal grid connectivity and be geographically connected to the rest of Europe but their feed in tariff makes them a sort of island. Spain and California fall into this subsidy island for the same basic reason. Another sort of island would be a location with favorable insolation coupled to high local grid prices. I think the PV industry will tend to concentrate on these islands and this is why PV prices will tend to float. Eventually PV will outgrow subsidies and compete with the grid in numerous areas. After this point the the high priced portion of the grid with favorable local insolation will continue to float PV prices. This condition should last for many years and it should drive outstanding growth.
As far as measuring solar energy use goes I agree it's very difficult for a number of reasons. It's too much for this communications but I have some ideas on how to do it. Some fashioned some borrowed. Cheers and goodnight. 63.196.195.15 (talk) 04:44, 6 February 2008 (UTC)
Somehow I managed to miss the link you provided. The paper was published in a scientific journal at one point and I had no idea he had published it as a working paper, so having missed the link it wasn't clear to me what you had read. I agree that "we willed it" is a wonderful response, but the fact remains that silicon was insanely expensive in the '50s compared to now -- even at the current inflated prices -- and only came down with the growth of the microelectronics industry. By the early '70s it was much cheaper, but still not as low as today; factor in the thicker wafers and less efficient sawing methods of the day and it's not hard to imagine that wafers were quite expensive. That said, if Berman was buying scrap wafers, which was not unusual for the PV industry up to the early 2000s, then it's entirely possible that he got them well below cost. It's not as romantic a notion as his response implies, but it might be closer to the truth. Your "PV islands" idea is intriguing, though I'm not 100% convinced. I'll have to give it more thought.--Squirmymcphee (talk) 06:10, 6 February 2008 (UTC)

[edit] By the way

Here are some maps if you are curious. Google image search kwh/kw and you will find them.

http://www.eere.energy.gov/consumer/your_home/electricity/index.cfm/mytopic=10860 http://re.jrc.ec.europa.eu/pvgis/countries/europe/pv13_opty.it.png Mrshaba (talk) 16:37, 6 February 2008 (UTC)

Is it you I've been discussing this with all along? The posts in that discussion are all signed with IP addresses....
Either way, thanks for the maps. I think they support what I've been saying quite nicely. Neither of them purports to be an insolation map -- the word "insolation" doesn't even appear on either page -- but they both purport to be maps for estimating annual kWh production given the size of the PV system in kWp. And as I just pointed out back on the original discussion page, if these were truly insolation maps then they would suggest that if you have zero kWp of PV then it must be dark outside.
I suppose this whole thing might seem like a pissing contest over a trivial matter, but technology is a difficult enough topic to discuss even when everybody is working from the same set of definitions. If a climatologist -- someone with expertise in global sunlight patterns -- with no knowledge of PV were to review an insolation map with units of kWh/kWp he wouldn't have a clue what it means. Furthermore, it would require a good deal of explanation to help him understand it. Is an insolation map really an insolation map if an expert in insolation can't read it?--Squirmymcphee (talk) 17:28, 6 February 2008 (UTC)
I am not the annonymous one but I've butted heads with him. Track down his opinions on space colonies because they're hilarious. I happened accross the conversation is all and remembered having seen the maps. That's all... Mrshaba (talk) 21:43, 6 February 2008 (UTC)
Ah, good to know -- I was worried that you had a Jekyll & Hyde personality! This is my second encounter with the person and I'm learning that I can't predict where his logic will carry the conversation. I'll be keeping my responses to him short and simple in the future, if I respond to him at all. I'll look for the space colonies....--Squirmymcphee (talk) 23:14, 6 February 2008 (UTC)
I'll save you the trouble of looking. At some point in the future, bearing in mind that we know that we can live on the planet for a billion years (short of any catastrophe) and are not constrained to the planet, there will be more people living off the planet than on the planet. NASA says there is enough material in the asteroids to build space colonies big enough for a trillion people. Since we expect the population of the earth to level off at about 9 billion, we can expect that the tipping point will occur sometime in this millennium - in less than a thousand years. Stephen Hawking says we will only be safe from extinction when we have populated outer space to the point that if the earth has a catastrophe it can be repopulated from space. My views may be hilarious to the clueless, but they are really quite ordinary. 199.125.109.27 (talk) 05:52, 7 February 2008 (UTC)
I have to admit, I don't really find that viewpoint so unusual. I don't find it particularly usual, mind you, but it certainly isn't novel to me (nor is it necessarily a view I share, but I'm not going to debate it, either...).--Squirmymcphee (talk) 19:25, 7 February 2008 (UTC)

[edit] Can you guess?

Today I read that Si spot market prices are $300-$400 per kilogram. Correct me if I'm wrong but IIRC each kilowatt requires 8-10 kilograms of Si so this means spot market Si leads to $2,500-$4,000 per kilowatt in silicon costs alone. In the same Greentech article they mention panels need to get down to a price of $2/watt before the market really takes off. I don't think this is necessarily a magic number but I'm wondering how low costs have gotten if you account for the exaggerating influence of Si. I would think the low cost producers would probably be down to $2-2.50/watt. Do you have a guess?

Do you happen to know roughly how much cheaper solar grade silicon will be compared to electronics grade? What do you think a reasonable long term price for Si is? $10-20/kg?

I often see the PV industry described as having low barriers for entry but I'm thinking the cost of silicon plus the impressive scale some producers are reaching presents a significant barrier for entry. When the costs of Si come down in a few years there could be several GW+ producers who have developed products with efficiences approaching 20%. Do you think the industry can still be described as having low barriers for entry? —Preceding unsigned comment added by 131.89.192.111 (talk) 17:39, 21 February 2008 (UTC)

I missed the article citing spot market prices at $300-400/kg -- got a link? I don't doubt you, but I'm interested in the article.
A kilowatt of PV probably requires more like 10-11 kg of Si, though that number has been dropping rapidly since Si got expensive. Yes, that means making solar cells with spot-market Si is a very expensive proposition. It is mitigated by a couple of factors, though: (1) too little Si is available on the spot market to sustain significant production volumes and (2) major manufacturers generally obtain their Si via contracts with Si purifiers and/or wafer manufacturers, and contract prices are more like $60-80/kg right now. Spot market figures give you a pretty good clue about just how tight the supply is, but they won't give you a good feel for what companies are actually spending. I have it on pretty good authority that direct module manufacturing costs are currently in the $2.50/watt range, give or take, for most silicon PV manufacturers, and that the figure would be much closer to $2.00/watt if we still had the low Si prices of a few years ago. Manufacturers are usually pretty guarded about that sort of information, though, so it's hard to know how reliable those figures are.
The price that solar-grade silicon will eventually reach is anybody's guess. I've been told that electronics-grade silicon must sell for $30-35/kg minimum for it to be profitable to the purifier and that the methods companies like REC are currently exploring will only shave $5-10/kg off that figure. Then again, others are developing processes they think will bring the cost down as low as $15-20/kg. In the end, though, silicon is a commodity and supply & demand will set the actual selling price -- the price required for profitability is more of a tool for refiners to decide whether or not to build more production capacity. Long-term I think contract prices in the $25-35/kg range would not be unreasonable, but I think as PV companies grow they're going to begin to vertically integrate to the point that they buy sand do the refining themselves. A few of them are already laying the groundwork for this, and in that case the cost of silicon will depend on the refining method the company chooses and just how pure they want their silicon to be.
As for barriers to entry, I think it depends on what part of the industry you look at. The barriers seem to be rising across the board, but in some segments they're rising faster than in others. Wafer production and solar cell processing both require quite a bit of capital if you plan to do them on a large scale (and as you point out, the scale required to be significant is growing rapidly), but if you buy cells and ship them to a country with low labor costs to be assembled by hand into modules then all you need is a little working capital. Anybody with the right certifications can install PV systems for little more than the cost of the tools and the certifications.--Squirmymcphee (talk) 19:07, 21 February 2008 (UTC)
Thank you for your insight. Your information is always very helpful.
I crossed my wires when I said a Greentech article quoted a spot price. Here's the actual link:
http://www.businessweek.com/investor/content/feb2008/pi20080220_903992.htm?chan=top+news_top+news+index_global+business

Mrshaba (talk) 00:12, 22 February 2008 (UTC)

I've continued to think about the early era of PV and the information we batted around about Berman and Solar Power Corporation vs. Varadi/Lindymeyer and Solarex. I've collected several more early PV price data points from NASA documents and whatnot. In general the data shows Maycocks' numbers are high. I've pretty much put this down to a blending of data between terrestrial producers like Solarex, SPC and STI vs. space producers such as Spectorlab. I asked Varadi for some early price/cost and production numbers as well as other questions. While he never answered my main price/production question he did say in the early days Solarex considered Spectrolab their main competitor. This surprised me but if Varadi considered Spectrolab the primary competitor in 1973 it seems likely Spectrolab was included in the early price data of terrestrial PV. As I said before, Maycock and Strategies Unlimited could not confirm this theory. Another thought on this is that the inflated price data might have thrown off the early calculations on price reductions and the R&D expenditures required to drive price reductions. Oh well right... This is all old info but it helps to understand the early history of PV and PV's entry into the remote terrestrial market prior to the Oil Crisis. This is mostly overlooked but I think this information provides a lesson to today's remote market. The Kenyan market comes to mind and the work of Grameen Shakti in Bangladesh both show PV has nontraditional markets that have straightforward drivers relatively outside of subsidies and research efforts. Isolation always strengthens PV's position... thus my island idea...
But here's an idea leading to a question. It's an idea in process so forgive me some obvious errors. You mentioned that Berman produced the cheapest product possible by using space PV discards while Solarex took a longer view and attempted to develop a multicrystalline cast process. I think you are right but this led me to the idea of the sheltering affect PV has intermittently benefited from. In the case of SPC they used space PV discards but this process was not sustainable for a large market. This was the first shelter but PV continued to grow beyond this early shelter by swimming along the microelectronics industry which made possible a relatively cheap supply of silicon. At this point PV has again grown out of this other shelter. Figuratively speaking is PV still a child or now a middle adult? I would think the silicon situation shows that PV is starting to standon it's own. The obvious counter to this middle adult idea is all the subsidies PV receives. My question is... Can you see other significant areas outside of subsidies where the PV industry has or is currently benefiting from other strong sheltering influences?
One other question I've been meaning to ask. Is the industry as exciting as it was 30 years ago or more so? It seems the public perception is ho hum but I'm wondering about the industry perspective. For me the situation seems really wonderful. Huge growth and progress and a target that isn't all that far off. What do you think? Who has made projections that seem most likely to you? 66.122.72.201 (talk) 04:53, 22 February 2008 (UTC)
Thanks for the link. Did I ever suggest you read "Experience Curves of Photovoltaic Technology" by Christopher Harmon (it's a white paper that I think you can Google pretty easily)? I thought I had, but if I did it apparently wasn't on this talk page. As I recall, his price data for the early days of PV is substantially lower than Maycock's (it's not really "his" data, but I can't remember where he got it).
In terms of islands, the off-grid market is definitely a different animal from the grid-connected market, and the off-grid market in the developing world is different still. Those sorts of islands I can definitely see -- in the context of our previous discussion, I was thinking only in terms of islands within the grid-connected market. Right now, the grid-connected market is the market driving the PV industry and all of the industry's goals seem to be defined in terms of grid prices for electricity. For years I've been telling anybody who will listen that the developing world represents an enormous opportunity for any PV company that can figure out how to tap into it. Right now I think PV companies see little reason to try, since they can sell everything they make without lifting a finger to do it (PV companies have the most bare-bones sales staffs I've ever seen and are still sold out for the foreseeable future). Once the market becomes more competitive, though, I hope that will begin to change. I think it's likely that localized, highly distributed power generation will be much cheaper than building centralized power plants and national grid systems, but to do that the locals themselves have to put up the money and maintain the systems. I would love to be involved in a project like that someday.
I don't know that Berman went for the cheapest product while Solarex took the long view -- that was speculation on my part. But PV has definitely benefited from what you call the "sheltering effect". Space discards, then microelectronics discards, and a massive influx of microelectronics industry knowledge all benefited the PV industry. Subsidies are, right now, the big one. If the subsidies were to end today, the industry would collapse -- there's no other shelter that could protect it. That's not to say that it wouldn't have grown at all over the past decade, but its growth would probably have been closer to its former 10-15%/year instead of its actual 40%/year. It's taking control of it own silicon supply, and you're seeing technologies like CdTe and CIGS that nobody had been able to commercialize for decades actually hitting the market. I think you could call the PV industry a young adult. When it starts to get serious about glass costs, that's your sign that it's maturing.
I can't say how exciting the industry was 30 years ago because I wasn't in it at that time, but I can say that it's an awful lot more exciting than it was 15, 10, or even just 5 years ago. I don't think energy is quite as important in the minds of the public as it was 30 years ago and I think the message they get from our press and our politicians is not as gloomy as it was then, and that may have to do with public perception. And some remember all the promises about alternative energy technologies from the '70s and might be a little wary of a repeat. At any rate, as long as current growth rates are sustained I think PV modules will hit the $1.00-1.50/watt range (retail) in 7-12 years. Whether that's enough for grid parity in the US will depend on how inverter costs drop and especially on how installation costs drop. When people focus solely on module costs I don't think they realize just how much it costs to install them, especially for small home systems. I think that will be taken care of, though, especially as modules are increasingly designed with ease of installation in mind and more installers pop up to create competition.--Squirmymcphee (talk) 16:07, 22 February 2008 (UTC)
You formerly suggested the Harmon paper and I've read it. Harmon described his learning curve data as the most complete set yet collected but I didn't take away much from his conclusions and he's dropped off the map since the paper so I couldn't follow up with him. His data came from both Maycock and SU as well as some other sources. I've said before and I'll say again I think the story is better understood by partition rather than production. Despite the fact that the learning curve works I think it's an oversimplification.
I also understand that you were only speculating about Berman's approach but at this point I agree with your speculation. I'm happy to hear you agree the developing world represents a fantastic market for PV. I've only come to this conclusion recently but this is clearly an under appreciated possibility and one to track in the future. The phrase "good Karma" comes to mind when I think about PV and developing countries. The idea that a developing country can skip some of the non-renewable problems of industrialized nations through PV is great. Check out Geodestinies if you haven't read it already.
I agree with almost all of your projections and thoughts. The installation end is peculiar though. Here's a thought. Right now it's more economical to install PV from the get go on new housing with the subsidies geared around having professionals install PV (at least in California). In the not too distant future with a market absent restrictive subsidies the do-it-yourselfer will be able to install most of a system up to the hot-work and inspection. I figure manufacturers are obviously going to produce more easily installable panels over the coming years which will reduce installation costs on the integrated end as well as simplify things on the retrofit end. Some might argue this effect won't be significant but I think do-it-yourselfer installation might play into things. Hell, the Bangladeshis are putting up panels on bamboo which shows me installation can be approached from several angles. All I'm saying is that installation costs could be reduced through non-professional home owner labor and this could dampen some of the installation cost burden. In San Luis Obispo where I live there's a law that XX% of new homes in 2010 have to be installed with PV. I would rather see 100% of homes be installed PV ready and let dynamics take over from there. But who knows. The situation in just 2 years will shift so we'll just have to see. Always good talking to you Squirmymcfee. I think I've run out of questions and ideas for now but I'll get back to you. Mrshaba (talk) 05:19, 23 February 2008 (UTC)

[edit] Cross check

I've read several articles mentioning the slowdown of the PV market lately. I've taken a second and third look at Germany's Feed-in incentives vs. production costs and it seems to me the estimated "spread" is still handsome enough to drive more investment. It appears the Spanish market will genuinely cool-off but I don't see an overall slowdown. How do things look from your end? Mrshaba (talk) 19:48, 8 March 2008 (UTC)

Any idea what Michael Rogol says about the prospect of a slowdown? So far it seems he has never been wrong about these sorts of things, even when his remarks contradict the vast majority of market observers. I've been extremely busy the last month or two and haven't had time to read up on what anybody is saying, but since demand has been so much greater than supply in recent years I don't think a demand slowdown would necessarily be a bad thing. Among other things, I think it would it would force competition in the industry and cause a rapid drop in retail PV module prices. A slowdown in demand might affect manufacturers' long-term plans, but I doubt it would keep anybody from selling their entire inventories for the next year or two.--Squirmymcphee (talk) 19:09, 11 March 2008 (UTC)

There was an emotional article in the Washington Post yesterday concerning silicon processing related pollution.

http://www.washingtonpost.com/wp-dyn/content/article/2008/03/08/AR2008030802595.html

They use a fellow by the name of Ren Bingyan (School of Material Sciences at Hebei Industrial University) as a reference. It appears as though Bingyan might moonlight at the University but during the day he's a VP with Alcoa.

http://www.zoominfo.com/Search/PersonDetail.aspx?PersonID=960875021

Is there a connection between Alcoa and solar? The only connection I can think of is their common interest in cheap electricity for refining. Mrshaba (talk) 13:49, 10 March 2008 (UTC)

Thanks for the WaPo link -- it's been going around. For the reasons mentioned in my last comment I haven't had time to read it yet, but based on the headline I get the impression that it is critical of a particular plant in China. That's hardly representative of the rest of the world, which is responsible for 90+% of the industry, or even the rest of China. I wouldn't necessarily discount the story's importance, though, because China's share of the market is rising rapidly and, especially in a "green" industry, reckless pollution by any player needs to be nipped in the bud. If the article is trying to demonize the entire industry as hypocritcal polluters, though, then it's sensationalist crap.--Squirmymcphee (talk) 19:09, 11 March 2008 (UTC)
Finally got a chance to read the WaPo article. I was kind of surprised to read that they were disposing of silicon tetrachloride, but I guess that's explained by the desire to ramp up production quickly and at all costs. I feel like I must be missing something, though, when I read the quote on the cost of polysilicon production -- am I crazy, or does $84,500 per ton translate into $84.50/kg? That's way too high to be accurate.--Squirmymcphee (talk) 04:00, 12 March 2008 (UTC)

Disregard Alcoa, I found the connection. Mr. Bingyan is a top dog with the Jinglong group and JA Solar. So there's a slight conflict of interest using him as a source in an article dealing with a competitor. Funny...

http://investing.businessweek.com/businessweek/research/stocks/people/person.asp?personId=31207526&capId=31160150&previousCapId=31160150&previousTitle=JA%20Solar%20Holdings%20Co.,%20Ltd.

I've tried to follow Rogol but he never seems to pop up on my google news searches. His prescient Sun screen studies hit the nail on the head four years ago. These last few years any amateur could throw a dart at a list of solar stocks and make money but Rogol was way ahead of the curve. I didn't realize he's forecast a slowdown. I'll have to follow up.

Here's a relatively recent article that mentions Si production costs for LDK. The numbers jive with the WAPO article. I was thinking the $84,500/ton was the cost to build the facility though. I don't have a good perspective on refining costs though so I'll have to follow up on this info too.

http://www.greentechmedia.com/articles/ldk-solar-cfo-talks-silicon-527.html Mrshaba (talk) 21:26, 12 March 2008 (UTC)

I don't know that Rogol has forecast a slowdown, I was asking you whether you knew. Aside from not really having paid much attention to forecasts lately, Rogol has starting charging quite a bit for his reports and my employer hasn't purchased them, so I haven't really had a chance to follow his latest analysis.
The LDK article is confusing. They say their cost is $80/kg, but that the cost for incumbents is $30/kg. The $30/kg is consistent with what polysilicon manufacturers have always told me. The $80/kg cost strikes me as ridiculously high -- prior to 2006, I think you'd have to go back to the '70s not to lose your shirt on polysilicon at $80/kg. I don't have the impression that this article or the WaPo article were citing this as the cost to build the facility, but if I remember correctly (and I may not) that value may not be far off the mark for the typical cost to build a silicon refinery. Something about these articles doesn't make sense to me, but I just don't have time to put much thought into what at the moment.--Squirmymcphee (talk) 01:53, 13 March 2008 (UTC)

My mistake... I checked out Photon Consulting. Judging from the synopsis Rogol et al. project demand and growth to be stronger than almost anyone imagines.

http://www.photon-consulting.com/en/solar_annual_2007/index.htm —Preceding unsigned comment added by 24.85.246.143 (talk) 18:31, 13 March 2008 (UTC)

[edit] Solar energy page

Hello Squirmy,

I did a lot of work on the Solar energy page last year but have not contributed for some time. After looking over the page again today I can see it needs some work. I have two questions you might be able to help with.

  1. 1: I read a book called Solar Power and Fuels a few months back. This book covered the first solar chemical conference back in the mid-1970s. The book defined solar chemical processes as chemical processes driven by photons. i.e. They specifically excluded processes driven by heat. Does this basic definition make sense to you?
  1. 2: When I think of the topic of Solar energy I divide it in two - I see solar energy as a resource on the one hand and solar energy technologies on the other. I've had a difficult time getting this distinction across but I think it's fundamental to the topic. Do you agree with this distinction or would you describe solar energy in an alternate way? Mrshaba (talk) 01:55, 10 April 2008 (UTC)
I suppose that technically speaking a photon-driven process could be accurately described as a chemical process, but it isn't the sort of thing that immediately comes to mind when I read the phrase "chemical process." I generally think of a chemical process more or less as something characterized by an exchange of electrons without the involvement of other particles. I doubt that's a technically correct way to think about it, but even chemists frequently label chemical reactions involving photons as "photochemical." I'm not entirely sure what you're getting with your second question, perhaps confirming the difficulty you've been having -- are you trying to make a distinction between the solar energy resource and the tools employed to use it?--Squirmymcphee (talk) 02:46, 11 April 2008 (UTC)
The chemical processes discussed in the book all involved electron exchanges but these exchanges were driven by light. By this reckoning a solar furnaces that cooks up a batch of lime doesn't qualify as solar chemical. One technology discussed was a hydrogen evolving photochemical process and there were other processes capable of growing labile chemical compounds that stored energy. I was hoping to improve the organization of the technologies on the solar energy page and I was wondering what your take on the solar chemical category was. Basically, I'm trying to draw a reasonable line between solar thermal and solar chemical processes. Hope that makes sense.
I'll change the second question to something hopefully less obscure. Do you think wind turbines, dams or downdraft towers are solar energy technologies? All of these utilize derivative forms of solar energy but I wouldn't call them solar technologies. On the other hand I think it makes perfect sense to talk about wind, hydroelectricity and warm tropical waters as secondary forms of solar energy from the resource point of view. Mrshaba (talk) 21:59, 11 April 2008 (UTC)
That distinction between chemical- and heat-driven reactions seems sensible to me. On the second question, when you get right down to it virtually all of our energy (just about everything but nuclear) is a derivative form of solar energy. In my experience, though, when someone refers to solar technology they're generally referring to technology that uses solar energy directly.--Squirmymcphee (talk) 04:39, 13 April 2008 (UTC)
I agree that most of our energy is a relative or a descendent of solar energy. I'm not asking you about that. I'm asking what do you think the term "solar energy" means to people. Do you associate the term with technology a resources or both? Mrshaba (talk) 07:41, 19 April 2008 (UTC)
That depends on context, so I guess the answer is both, but usually not both at the same time. When discussing energy conversion, I think "solar energy" refers to technology that uses the solar resource as its primary input (i.e., without intermediate conversion to some other resource such as wind or tidal energy). Outside of that context I think it generally refers to resources alone, as in meteorology and biology, for example.--Squirmymcphee (talk) 05:23, 23 April 2008 (UTC)
I agree it depends on context. It's a seemingly simple distinction but as I said above I've had a hard time getting across the two sides of the term "solar energy". I think the use of identical vocabulary to describe both the technology side and the resource side has a way of blurring the separation. Direct and indirect are used to describe types of solar water heaters, qualities of light and qualities of solar resources. I've tried to carefully choose words such as primary and secondary to replace direct and indirect when discussing solar resources but this replacement presents an added problem. To quote you, "...it's like a word that everybody understands -- it's okay to use a different word to represent the same idea, as long as you understand you might have to do a little extra work to make sure everybody understands your definition."
I should be happy we're no longer in the days of silicon batteries. Thanks for your reply. Mrshaba (talk) 17:10, 23 April 2008 (UTC)
Hello Squirmy,
I've been working on the solar energy page lately. I was hoping you could give me your opinion of it. What is good and what is poor? Is it balanced and are all the notable topics hit on? Mrshaba (talk) 06:26, 28 April 2008 (UTC)
Sorry, haven't had time to check it out lately and probably won't for the rest of this month. I'm not sure why I even bothered logging in today, actually.... I'll have a look at it when I get a chance.--Squirmymcphee (talk) 14:20, 7 May 2008 (UTC)
No worries, I respect your opinion is all. I opened up the page to peer review so this should provide some positive feedback. Mrshaba (talk) 18:13, 7 May 2008 (UTC)
Hello - there are more than two people working on the Solar energy article. Please keep discussions on the article in one place - on the Talk:Solar energy page. 199.125.109.41 (talk) 23:38, 10 April 2008 (UTC)

[edit] Do you know and did you know

  • Do you know of a recent estimate for the worldwide surface area of PV? I know it's a weird metric but I'm looking to make a comparison between PV and solar water heaters which are often measured by surface area.
  • The PV page is listing 2007 production as 3.8 GW and total installed capacity as 12.4 GW. The source is [1] At first I thought these numbers were much too high based on the info Maycock gave me last fall but just now I was reading some stuff from Photon Consulting that you might find interesting. [2] PC is listing installations as 2.6 GW in 2006 and 3.9 GW in 2007. Their projection for 2010 is stunning and I must say the report looks tantalizing. I suspect a lot of sources use Maycock's/Greentech's numbers so there's some scatter between reports that use info from different sides. Anyways... cheers Mrshaba (talk) 07:29, 24 May 2008 (UTC)
    • Disregard... The Earth Policy Institute and Photon reports are listing yearly production (~3.9 GW) rather than yearly capacity additions (~3 GW). Apparently, there's getting to be quite a lag between the two. Mrshaba (talk) 18:08, 30 May 2008 (UTC)
I'm looking for a nominal price on PV electricity for the solar energy page. I used 20-40 cents/kWh based on the solarbuzz site. Do you know of a better value? Mrshaba (talk) 20:31, 12 June 2008 (UTC)

[edit] Claverton Energy Group

Dear Squirmy - the above group may interest you.....Engineman...Engineman (talk) 06:13, 31 May 2008 (UTC) a lot of discussion on energy topics particularly intermittency....http://uk.groups.yahoo.com/group/claverton/ Are you aware of the sudden failure of Sizewell B and Longannet in the UK recently leading to a 1.5 GW loss of power in 10 minutes? Widespread power failures.