Spectral density estimation

From Wikipedia, the free encyclopedia

In statistical signal processing, the goal of spectral density estimation is to estimate the spectral density (also known as the power spectrum) of a random signal from a sequence of time samples of the signal. Intuitively speaking, the spectral density characterizes the frequency content of the signal. The purpose of estimating the spectral density is to detect any periodicities in the data, by observing peaks at the frequencies corresponding to these periodicities.

[edit] Techniques

Techniques for spectrum estimation can generally be divided into parametric and non-parametric methods. The parametric approaches assume that the underlying stationary stochastic process has a certain structure which can be described using a small number of parameters (for example, using an auto-regressive or moving average model). In these approaches, the task is to estimate the parameters of the model that describes the stochastic process. By contrast, non-parametric approaches explicitly estimate the covariance or the spectrum of the process without assuming that the process has any particular structure.

Following is a partial list of spectral density estimation techniques:

[edit] References

  • Porat, B. (1994). Digital Processing of Random Signals: Theory & Methods. Prentice Hall. ISBN 0130637513. 
Image:Signal-icon.png This signal processing-related article is a stub. You can help Wikipedia by expanding it.